The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Characteristic of RDF
3.2. Gasification of RDF in Steam Atmosphere
3.2.1. Changes in the Formation Rates of Gaseous Components
3.2.2. Effect of Process Conditions on H2 and CO Formation Rates
3.2.3. Effect of Process Conditions on the Resulting Gas
3.2.4. Effect of Process Conditions on Maximum Carbon Conversion Degree
3.3. Gasification of RDF in Carbon Dioxide Atmosphere
3.3.1. Changes in the Formation Rates of Gaseous Components
3.3.2. Effect of Process Conditions on the CO Formation Rates
3.3.3. Effect of Process Conditions on the Resulting Gas
3.3.4. Effect of Process Conditions on Maximum Carbon Conversion Degree
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Yang, Y.; Liew, R.K.; Tamothran, A.M.; Foong, S.Y.; Yek, P.N.Y.; Chia, P.W.; Van Tran, T.; Peng, W.; Lam, S.S. Gasification of refuse-derived fuel from municipal solid waste for energy production: A review. Environ. Chem. Lett. 2021, 19, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- Statistica. Projected Generation of Municipal Solid Waste Worldwide from 2016 to 2050. 2020. Available online: https://www.statista.com/statistics/916625/global-generation-of-municipal-solid-waste-forecast (accessed on 2 October 2020).
- Białowiec, A. Hazardous emissions from municipal solid waste landfills. Contemp. Probl. Manag. Environ. Ment. Prot. 2011, 9, 7–28. [Google Scholar]
- Funk, K.; Milford, J.; Simpkins, T. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options; NREL/TP-6A50-52829; NREL: Golden, CO, USA, 2013. [Google Scholar]
- Martínez, I.; Grasa, G.; Callén, M.S.; López, J.M.; Murillo, R. Optimised production of tailored syngas from municipal solid waste (MSW) by sorption-enhanced gasification. Chem. Eng. J. 2020, 401, 126067. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Jusoh, A.; Chong, C.T.; Ani, F.N.; Chase, H.A. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew. Sustain. Energy Rev. 2016, 53, 741–753. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Cheah, W.Y.; Kamaludin, N.H.; Ibrahim, T.; Sonne, C.; Peng, W.; Show, P.-L.; Lam, S.S. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production. Bioresour. Technol. 2021, 320, 124299. [Google Scholar] [CrossRef]
- Mondal, P.; Dang, G.; Garg, M. Syngas production through gasification and cleanup for downstream applications—Recent developments. Fuel Process. Technol. 2011, 92, 1395–1410. [Google Scholar] [CrossRef]
- Grazhdani, D. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park. Waste Manag. 2016, 48, 3–13. [Google Scholar] [CrossRef]
- Noufal, M.; Yuanyuan, L.; Maalla, Z.; Adipah, S. Determinants of Household Solid Waste Generation and Composition in Homs City, Syria. J. Environ. Public Health 2020, 2020, 7460356. [Google Scholar] [CrossRef]
- Sharma, K.D.; Jain, S. Municipal solid waste generation, composition, and management: The global scenario. Soc. Responsib. J. 2020, 16, 917–948. [Google Scholar] [CrossRef]
- Seo, Y.-C.; Alam, T.; Yang, W.-S. Gasification of Municipal Solid Waste. In Gasification for Low-Grade Feedstock; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Pawłowski, P.; Bałazińska, M.; Ignasiak, K.; Robak, J. Przygotowanie odpadów komunalnych do ich energetycznego wykorzystania: Paliwo typu SRF. Piece Przemysłowe Kotły 2016, 4, 20–26. [Google Scholar]
- Caputo, A.C.; Pelagagge, P.M. RDF production plants: Design and costs. Appl. Therm. Eng. 2002, 22, 423–437. [Google Scholar] [CrossRef]
- Achinas, S.; Kapetanios, E. Efficiency Evaluation of RDF Plasma Gasification Process. Energy Environ. Res. 2013, 3, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Corella, J.; Toledo, J.M.; Molina, G. Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock. Bioresour. Technol. 2008, 99, 7539–7544. [Google Scholar] [CrossRef] [PubMed]
- Galvagno, S.; Casu, S.; Casciaro, G.; Martino, M.; Russo, A.A.; Portofino, S. Steam Gasification of Refuse-Derived Fuel (RDF): Influence of Process Temperature on Yield and Product Composition. Energy Fuels 2006, 20, 2284–2288. [Google Scholar] [CrossRef]
- van Kasteren, J.M. Co-gasification of wood and polyethylene with the aim of CO and H2 production. J. Mater. Cycles Waste Manag. 2006, 8, 95–98. [Google Scholar] [CrossRef]
- Dalai, A.K.; Batta, N.; Eswaramoorthi, I.; Schoenau, G.J. Gasification of refuse derived fuel in a fixed bed reactor for syngas production. Waste Manag. 2009, 29, 252–258. [Google Scholar] [CrossRef]
- Rashidi, M.; Tavasoli, A. Hydrogen rich gas production via supercritical water gasification of sugarcane bagasse using unpromoted and copper promoted Ni/CNT nanocatalysts. J. Supercrit. Fluids 2015, 98, 111–118. [Google Scholar] [CrossRef]
- Safari, F.; Salimi, M.; Tavasoli, A.; Ataei, A. Non-catalytic conversion of wheat straw, walnut shell and almond shell into hydrogen rich gas in supercritical water media. Chin. J. Chem. Eng. 2016, 24, 1097–1103. [Google Scholar] [CrossRef]
- Zubek, K.; Czerski, G.; Porada, S. Comparison of Catalysts Based on Individual Alkali and Alkaline Earth Metals with Their Composites Used for Steam Gasification of Coal. Energy Fuels 2017, 32, 5684–5692. [Google Scholar] [CrossRef]
- Czerski, G.; Zubek, K.; Grzywacz, P.; Porada, S. Effect of Char Preparation Conditions on Gasification in a Carbon Dioxide Atmosphere. Energy Fuels 2018, 31, 815–823. [Google Scholar] [CrossRef]
- Śpiewak, K.; Czerski, G.; Porada, S. Effect of K, Na and Ca-based catalysts on the steam gasification reactions of coal. Part I: Type and amount of one-component catalysts. Chem. Eng. Sci. 2021, 229, 116024. [Google Scholar] [CrossRef]
- Czerski, G.; Śpiewak, K.; Grzywacz, P.; Wierońska-Wiśniewska, F. Assessment of the catalytic effect of various biomass ashes on CO2 gasification of tire char. J. Energy Inst. 2021, 99, 170–177. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, X.; Li, S.; Mikulčić, H.; Bešenić, T.; Deng, S.; Vujanović, M.; Tan, H.; Kumfer, B. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. J. Energy Inst. 2019, 92, 108–117. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Bytnar, K.; Burmistrz, P. Possibility of using alternative fuels in Polish power plants in the context of mercury emissions. Waste Manag. 2021, 126, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Lonati, G.; Zanoni, F. Monte-Carlo human health risk assessment of mercury emissions from a MSW gasification plant. Waste Manag. 2013, 33, 347–355. [Google Scholar] [CrossRef]
- Haydary, J.; Šuhaj, P.; Šoral, M. Semi-Batch Gasification of Refuse-Derived Fuel (RDF). Processes 2021, 9, 343. [Google Scholar] [CrossRef]
- Kara, M.; Günay, E.; Tabak, Y.; Yıldız, Ş. Perspectives for pilot scale study of RDF in Istanbul, Turkey. Waste Manag. 2009, 29, 2976–2982. [Google Scholar] [CrossRef]
- Coetzee, S.; Neomagus, H.; Bunt, J.; Everson, R.C. Improved reactivity of large coal particles by K2CO3 addition during steam gasification. Fuel Process. Technol. 2013, 114, 75–80. [Google Scholar] [CrossRef]
- Śpiewak, K.; Czerski, G.; Sopata, A. Examination of steam gasification of coal with physically mixed catalysts. Pol. J. Chem. Technol. 2019, 21, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, F.; Fan, M.; Wang, Y. Catalytic Coal Gasification. In Sustainable Catalytic Processes; Elsevier: London, UK, 2015; pp. 179–199. [Google Scholar]
- Dupont, C.; Jacob, S.; Marrakchy, K.O.; Hognon, C.; Grateau, M.; Labalette, F.; Perez, D.D.S. How inorganic elements of biomass influence char steam gasification kinetics. Energy 2016, 109, 430–435. [Google Scholar] [CrossRef]
- Yip, K.; Tian, F.; Hayashi, J.-I.; Wu, H. Effect of Alkali and Alkaline Earth Metallic Species on Biochar Reactivity and Syngas Compositions during Steam Gasification. Energy Fuels 2010, 24, 173–181. [Google Scholar] [CrossRef]
- Pecha, M.B.; Terrell, E.; Montoya, J.I.; Stankovikj, F.; Broadbelt, L.J.; Chejne, F.; Garcia-Perez, M. Effect of Pressure on Pyrolysis of Milled Wood Lignin and Acid-Washed Hybrid Poplar Wood. Ind. Eng. Chem. Res. 2017, 56, 9079–9089. [Google Scholar] [CrossRef]
- Noumi, E.S.; Blin, J.; Valette, J.; Rousset, P. Combined Effect of Pyrolysis Pressure and Temperature on the Yield and CO2 Gasification Reactivity of Acacia Wood in macro-TG. Energy Fuels 2015, 29, 7301–7308. [Google Scholar] [CrossRef]
- Pecha, M.B.; Arbelaez, J.I.M.; Garcia-Perez, M.; Chejne, F.; Ciesielski, P.N. Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: Chemical reactions, heat transfer, mass transfer, and phase change. Green Chem. 2019, 21, 2868–2898. [Google Scholar] [CrossRef] [Green Version]
- Cetin, E.; Moghtaderi, B.; Gupta, R.; Wall, T. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 2004, 83, 2139–2150. [Google Scholar] [CrossRef]
- Byron, S.R.J.; Loganathan, M.; Shantha, M.S. A Review of the Water Gas Shift Reaction Kinetics. Int. J. Chem. React. Eng. 2010, 8, 1–32. [Google Scholar] [CrossRef]
- Mazumdar, B.K.; Chatterjee, N.N. Mechanism of coal pyrolysis in relation to industrial practice. Fuel 1973, 52, 11–19. [Google Scholar] [CrossRef]
- Roberts, D.G.; Harris, D.J. Char Gasification with O2, CO2, and H2O: Effects of Pressure on Intrinsic Reaction Kinetics. Energy Fuels 2000, 14, 483–489. [Google Scholar] [CrossRef]
Parameter | RDF | Refs. [27,28,30,31] |
---|---|---|
Proximate analysis (wt.%) | ||
Moisture—Mad | 2.13 | <20 |
Ash—Aad | 15.4 | 8–12 |
Volatile Matter—VMdaf | 92.91 | 50–80 |
Fixed carbon—FCad * | 5.85 | 9.20 |
Higher heating valuead (MJ/kg) | 25.8 | 15–22.7 |
Ultimate analysis (wt.%) | ||
Carbon—Cdaf | 62.7 | 47–62 |
Hydrogen—Hdaf | 24.5 | 6.25–8.97 |
Sulfur—Sdaft | 0.75 | 0–0.5 |
Oxygen + Nitrogen—(O + N)daf * | 12.1 | - |
Mercury—Hg (μg/kg) | 899 | 156–4908 |
Parameter | RDF |
---|---|
Ash composition (wt.%) | |
CaO | 42.1 |
SiO2 | 19.8 |
Al2O3 | 12.1 |
TiO2 | 4.8 |
SO3 | 4.7 |
Fe2O3 | 4.0 |
MgO | 2.7 |
P2O5 | 2.3 |
Cl | 2.1 |
Na2O | 1.9 |
K2O | 1.5 |
ZnO | 0.9 |
BaO | 0.5 |
Cr2O3 | 0.4 |
Ag2O | 0.2 |
T/p | 0.5 MPa | 1 MPa | 1.5 MPa | |||
---|---|---|---|---|---|---|
H2/CO | LHV | H2/CO | LHV | H2/CO | LHV | |
700 °C | 3.9 | 8.2 | 3.6 | 10.7 | 2.1 | 11.4 |
750 °C | 4.5 | 11.1 | 4.0 | 11.1 | 2.8 | 12.0 |
800 °C | 4.6 | 14.1 | 3.2 | 12.4 | 3.3 | 15.0 |
900 °C | 3.9 | 11.9 | 3.6 | 10.9 | 2.1 | 16.2 |
LHV [MJ/Nm3] | ||||
---|---|---|---|---|
p\T | 700 °C | 750 °C | 800 °C | 900 °C |
0.5 MPa | 19.9 | 19.7 | 17.0 | 16.8 |
1 MPa | 19.8 | 17.0 | 15.8 | 15.3 |
1.5 MPa | 17.9 | 16.2 | 15.6 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śpiewak, K.; Czerski, G.; Bijak, K. The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide. Energies 2021, 14, 7502. https://doi.org/10.3390/en14227502
Śpiewak K, Czerski G, Bijak K. The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide. Energies. 2021; 14(22):7502. https://doi.org/10.3390/en14227502
Chicago/Turabian StyleŚpiewak, Katarzyna, Grzegorz Czerski, and Karol Bijak. 2021. "The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide" Energies 14, no. 22: 7502. https://doi.org/10.3390/en14227502
APA StyleŚpiewak, K., Czerski, G., & Bijak, K. (2021). The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide. Energies, 14(22), 7502. https://doi.org/10.3390/en14227502