Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local Context
2.2. Electricity Generation Modelling
2.3. Chemical Transport Modelling
2.4. Emissions Modelling
2.5. Model Performance Assessment
2.6. Population Exposure Modelling
2.7. Health Impacts and Cost Assessments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy system transformations for limiting end-of-century warming to below 1.5 C. Nat. Clim. Chang. 2015, 5, 519. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.; Van Den Berg, M.; Bijl, D.L.; De Boer, H.S.; Daioglou, V.; Doelman, J.C.; Edelenbosch, O.Y.; Harmsen, M. Alternative pathways to the 1.5 C target reduce the need for negative emission technologies. Nat. Clim. Chang. 2018, 8, 391. [Google Scholar] [CrossRef]
- Wachsmuth, J.; Duscha, V. Achievability of the Paris targets in the EU—The role of demand-side-driven mitigation in different types of scenarios. Energy Effic. 2019, 12, 403–421. [Google Scholar] [CrossRef] [Green Version]
- Bauer, N.; Calvin, K.; Emmerling, J.; Fricko, O.; Fujimori, S.; Hilaire, J.; Eom, J.; Krey, V.; Kriegler, E.; Mouratiadou, I. Shared socio-economic pathways of the energy sector–quantifying the narratives. Glob. Env. Chang. 2017, 42, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Klimont, Z.; Smith, S.J.; Van Dingenen, R.; Dentener, F.; Bouwman, L.; Riahi, K.; Amann, M.; Bodirsky, B.L.; van Vuuren, D.P. Future air pollution in the Shared Socio-economic Pathways. Glob. Env. Chang. 2017, 42, 346–358. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Assessment of contribution of Australia’s energy production to CO2 emissions and environmental degradation using statistical dynamic approach. Sci. Tot. Environ. 2018, 639, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S. A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nat. Energy 2018, 3, 515. [Google Scholar] [CrossRef]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geller, H.; Harrington, P.; Rosenfeld, A.H.; Tanishima, S.; Unander, F. Polices for increasing energy efficiency: Thirty years of experience in OECD countries. Energy Policy 2006, 34, 556–573. [Google Scholar] [CrossRef]
- Broin, E.Ó.; Nässén, J.; Johnsson, F. Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010. Appl. Energy 2015, 150, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Mauerhofer, V.; Geng, Y. Analysis of existing building energy saving policies in Japan and China. J. Clean. Prod. 2016, 112, 1510–1518. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Petrichenko, K. Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 2015, 41, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Fais, B.; Sabio, N.; Strachan, N. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets. Appl. Energy 2016, 162, 699–712. [Google Scholar] [CrossRef] [Green Version]
- Pauliuk, S.; Arvesen, A.; Stadler, K.; Hertwich, E.G. Industrial ecology in integrated assessment models. Nat. Clim. Chang. 2017, 7, 13. [Google Scholar] [CrossRef]
- Allwood, J.M.; Cullen, J.M.; Milford, R.L. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 2010, 44, 1888–1894. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.; Borgford-Parnell, N.; Brauer, M.; Haines, A.; Kuylenstierna, J.C.I.; Leonard, S.A.; Ramanathan, V.; Ravishankara, A.; Amann, M.; Srivastava, L. A climate policy pathway for near-and long-term benefits. Science 2017, 356, 493–494. [Google Scholar] [CrossRef]
- Buonocore, J.J.; Luckow, P.; Norris, G.; Spengler, J.D.; Biewald, B.; Fisher, J.; Levy, J.I. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Chang. 2016, 6, 100. [Google Scholar] [CrossRef]
- Haines, A.; Amann, M.; Borgford-Parnell, N.; Leonard, S.; Kuylenstierna, J.; Shindell, D. Short-lived climate pollutant mitigation and the Sustainable Development Goals. Nat. Clim. Chang. 2017, 7, 863. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Ayeb-Karlsson, S.; Bai, Y.; Byass, P.; Campbell-Lendrum, D.; Colbourn, T.; Cox, P.; Davies, M.; Depledge, M. The Lancet Countdown: Tracking progress on health and climate change. Lancet 2017, 389, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Schucht, S.; Colette, A.; Rao, S.; Holland, M.; Schöpp, W.; Kolp, P.; Klimont, Z.; Bessagnet, B.; Szopa, S.; Vautard, R. Moving towards ambitious climate policies: Monetised health benefits from improved air quality could offset mitigation costs in Europe. Environ. Sci. Policy 2015, 50, 252–269. [Google Scholar] [CrossRef]
- West, J.J.; Smith, S.J.; Silva, R.A.; Naik, V.; Zhang, Y.; Adelman, Z.; Fry, M.M.; Anenberg, S.; Horowitz, L.W.; Lamarque, J.F. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Chang. 2013, 3, 885. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Hui, J.; Wang, C.; Zheng, Y.; Zhang, X.; Zhang, Q.; Gong, P. The Lancet Countdown on PM2·5 pollution-related health impacts of China’s projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: A modelling study. Lancet Planet. Health 2018, 2, 151–161. [Google Scholar] [CrossRef]
- Abel, D.W.; Holloway, T.; Martínez-Santos, J.; Harkey, M.; Tao, M.; Kubes, C.; Hayes, S. Air quality-related health benefits of energy efficiency in the United States. Env. Sci. Tech. 2019, 53, 3987–3998. [Google Scholar] [CrossRef]
- Delucchi, M.A.; Murphy, J.J.; McCubbin, D.R. The health and visibility cost of air pollution: A comparison of estimation methods. J. Environ. Mgmt. 2002, 64, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.M.; Saari, R.K.; Selin, N.E. Air quality resolution for health impact assessment: Influence of regional characteristics. Atmos. Chem. Phys. 2014, 14, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Galetovic, A.; Muñoz, C.M. Wind, coal, and the cost of environmental externalities. Energy Policy 2013, 62, 1385–1391. [Google Scholar] [CrossRef]
- Georgakellos, D.A. External cost of air pollution from thermal power plants: Case of Greece. Int. J. Ener. Sec. Mgmt. 2007, 1, 257–272. [Google Scholar] [CrossRef]
- Yeo, M.J.; Kim, Y.P. Sensitivity of the environmental costs of air pollution caused by SOx, NOx, and PM from power plants applied to the power mix configuration in South Korea. Air Qual. Atmos. Health 2016, 9, 359–366. [Google Scholar] [CrossRef]
- Blegler, T. The Hidden Costs of Electricity: Externalities of Power Generation in Australia; The Australian Academy of Technological Sciences and Engineering: Parkville, Vic, Australia, 2009; ISBN 978-1-921388-05-7. [Google Scholar]
- Ewald, B. The value of health damage due to sulphur dioxide emissions from coal-fired electricity generation in NSW and implications for pollution licences. Aus. N. Z. J. Public Health 2018, 42, 227–229. [Google Scholar] [CrossRef]
- Curran, G. Contested energy futures: Shaping renewable energy narratives in Australia. Glob. Environ. Chang. 2012, 22, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Garnaut, R. The Garnaut Climate Change Review; Cambridge University Press: Port Melbourne, Australia, 2008; p. 4447. ISBN 978052174. [Google Scholar]
- Commonwealth of Australia. State and Territory Greenhouse Gas Inventories 2017; Commonwealth of Australia: Canberra, Australia, 2019.
- Chang, L.T.C.; Scorgie, Y.; Duc, H.N.; Monk, K.; Fuchs, D.; Trieu, T. Major source contributions to ambient PM2. 5 and exposures within the New South Wales greater metropolitan region. Atmosphere 2019, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef]
- DEC. Air Pollution Economics—Health Costs of Air Pollution in the Greater Sydney Metropolitan Region; NSW Government: Sydney, Australia, 2005; ISBN 1741377366.
- Broome, R.A.; Powell, J.; Cope, M.E.; Morgan, G.G. The mortality effect of PM2. 5 sources in the Greater Metropolitan Region of Sydney, Australia. Environ. Int. 2020, 137, 105429. [Google Scholar] [CrossRef]
- Riley, M.; Kirkwood, J.; Jiang, N.; Ross, G.; Scorgie, Y. Air quality monitoring in NSW: From long term trend monitoring to integrated urban services. Air Qual. Clim. Chang. 2020, 54, 44. [Google Scholar]
- AEMO. National Transmission Network Development Plan; Australian Energy Market Operator: Sydney, Australia, 2016; 110p. [Google Scholar]
- NSW. Draft Climate Change Fund Strategic Plan 2017–2022; OEH 2016/0438; NSW Government: Sydney, Australia, 2016; ISBN 978-1-76039-427-1.
- Guérette, E.A.; Chang, L.T.C.; Cope, M.E.; Duc, H.N.; Emmerson, K.M.; Monk, K.; Rayner, P.J.; Scorgie, Y.; Silver, J.D.; Simmons, J.; et al. Evaluation of regional air quality models over Sydney, Australia: Part 2, Comparison of PM2. 5 and ozone. Atmosphere 2020, 11, 233. [Google Scholar] [CrossRef]
- McGregor, J.L.; Dix, M.R. High Resolution Numerical Modelling of the Atmosphere and Ocean; Hamilton, K., Ohfuchi, W., Eds.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Clark, P.A.; Harcourt, S.A.; Macpherson, B.; Mathison, C.T.; Cusack, S.; Naylor, M. Prediction of visibility and aerosol within the operational Met Office Unified Model. I: Model formulation and variational assimilation. Q. J. Roy. Met. Soc. 2008, 134, 1801–1816. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Luecken, D.; Yarwood, G.; Whitten, G.Z.; Carter, W.P. Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment J. Appl. Meteor. Clim. 2008, 47, 3–14. [Google Scholar] [CrossRef]
- Sarwar, G.; Godowitch, J.; Henderson, B.H.; Fahey, K.; Pouliot, G.; Hutzell, W.T.; Mathur, R.; Kang, D.; Goliff, W.S.; Stockwell, W.R. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms. Atmos. Chem. Phys. 2013, 13, 9695. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Nenes, A. SORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Tech. 2006, 40, 2635. [Google Scholar] [CrossRef] [PubMed]
- Physick, W.; Cope, M.; Lee, S. The impact of climate change on ozone-related mortality in Sydney. Int. J. Env. Res. Public Health 2014, 11, 1034–1048. [Google Scholar] [CrossRef] [Green Version]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Met. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Rao, S.T.; Galmarini, S.; Puckett, K. Air Quality Model Evaluation International Initiative (AQMEII) advancing the state of the science in regional photochemical modeling and its applications. Bul. Am. Met. Soc. 2011, 92, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.E.; McNally, D.E.; Tesche, T.W.; Tonnesen, G.; Boylan, J.W.; Brewer, P. Preliminary evaluation of the Community Multiscale Air Quality model for 2002 over the southeastern United States. J. Air Waste Mgmt. 2005, 55, 1694–1708. [Google Scholar] [CrossRef]
- Riley, M.L.; Scorgie, Y.; Jiang, N.; Capnerhurst, J.; Salter, D. A metric for assessing population weighted average air quality in NSW. In Proceedings of the 23rd International Clean Air & Environment Conference, Brisbane, Australia, 16–18 October 2017. [Google Scholar]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- US EPA. The Benefits and Costs of the Clean Air Act from 1990 to 2020; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; 238p. [Google Scholar]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef]
- Aldy, J.; Viscusi, W. Age Differences in the Value of Statistical Life: Revealed Preference Evidence. Rev. Environ. Econ. Policy 2007, 1, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Behrer, A.P.; Mauter, M.S. Allocating damage compensation in a federalist system: Lessons from spatially resolved air emissions in the marcellus. Env. Sci. Tech. 2017, 51, 3600–3608. [Google Scholar] [CrossRef] [PubMed]
- Barnsley, P.D.; Peden, A.E.; Scarr, J. Calculating the economic burden of fatal drowning in Australia. J. Safe. Res. 2018, 67, 57–63. [Google Scholar] [CrossRef]
- Goulder, L.H.; Williams, R.C., III. The choice of discount rate for climate change policy evaluation. Clim. Chang. Econ. 2012, 3, 1250024-1-1. [Google Scholar] [CrossRef] [Green Version]
- Perry-Duxbury, M.; van Exel, J.; Brouwer, W. How to value safety in economic evaluations in health care? A review of applications in different sectors. Eur. J. Health Econ. 2019, 20, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NSW Government. SRNSW: NRS 4193—Annual Reports [Electricity Commission]; NSW State Records: Sydney, Australia, 1961.
- Hewitt, C.N. The atmospheric chemistry of sulphur and nitrogen in power station plumes. Atmos. Environ. 2001, 35, 1155–1170. [Google Scholar] [CrossRef]
- Frazer, F.W.; Belcher, C.B. Quantitative determination of the mineral-matter content of coal by a radiofrequency-oxidation technique. Fuel 1973, 52, 41–46. [Google Scholar] [CrossRef]
Source Group | Oxides of Nitrogen | PM2.5 | Sulfur Dioxide |
---|---|---|---|
Coal-fired power generation | 139 | 1 | 198 |
Industrial and other power generation | 22 | 15 | 16 |
On-Road Mobile | 45 | 2 | 0 |
Off-Road Mobile | 59 | 3 | 11 |
Domestic-Commercial | 4 | 8 | 0 |
Natural | 36 | 77 | 8 |
Total | 305 | 106 | 233 |
VSL | VSLY, Discounted | ||
---|---|---|---|
3% | 7% | 10% | |
4,370,000 | 189,000 | 327,000 | 446,000 |
7,850,000 | 340,000 | 589,000 | 803,000 |
10,600,000 | 458,000 | 795,000 | 1,084,000 |
β | Premature Deaths | Years of Life Lost | ||
---|---|---|---|---|
AN | USD/MWh | YLL | USD/MWh | |
0.0060 | 31 | 3.35 (1.87–4.52) | 382 | 3.05 (0.98–5.62) |
0.0131 | 68 | 7.29 (4.05–9.84) | 832 | 6.65 (2.13–12.24) |
Scenario | Damage Costs (AUD/MWh) | ||
---|---|---|---|
Lower | Central | Upper | |
Medium demand shock (2017–2118, incl. ramp up) | 0.83 | 1.50 | 4.42 |
Large demand shock (2017–2118, incl. ramp up) | 0.85 | 1.52 | 4.49 |
Medium demand shock (2026–2118, excl. ramp up) | 1.33 | 2.40 | 7.06 |
Large demand shock (2026–2118, excl. ramp up) | 1.36 | 2.45 | 7.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazaheri, M.; Scorgie, Y.; Broome, R.A.; Morgan, G.G.; Jalaludin, B.; Riley, M.L. Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information. Energies 2021, 14, 7622. https://doi.org/10.3390/en14227622
Mazaheri M, Scorgie Y, Broome RA, Morgan GG, Jalaludin B, Riley ML. Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information. Energies. 2021; 14(22):7622. https://doi.org/10.3390/en14227622
Chicago/Turabian StyleMazaheri, Mandana, Yvonne Scorgie, Richard A. Broome, Geoffrey G. Morgan, Bin Jalaludin, and Matthew L. Riley. 2021. "Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information" Energies 14, no. 22: 7622. https://doi.org/10.3390/en14227622
APA StyleMazaheri, M., Scorgie, Y., Broome, R. A., Morgan, G. G., Jalaludin, B., & Riley, M. L. (2021). Monetising Air Pollution Benefits of Clean Energy Requires Locally Specific Information. Energies, 14(22), 7622. https://doi.org/10.3390/en14227622