Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan
Abstract
:1. Introduction
2. Literature Review
3. Model, Data, and Methodology
3.1. Model
3.2. Data
3.3. Methodology
4. Estimation Results and Interpretation
5. Conclusions and Policy Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, M.; Friedrich, J. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. World Resources Institute. Available online: https://www.wri.org/blog/2020/02/greenhouse-gas-emissions-by-country-sector (accessed on 24 August 2020).
- Overview of Greenhouse Gases. United States Environmental Protection Agency (EPA). Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 25 August 2020).
- Historical GHG Emissions. Climate Watch. Available online: https://www.climatewatchdata.org/ghg-emissions?breakBy=gas&chartType=percentage&end_year=2018&start_year=1990 (accessed on 27 August 2021).
- United Nations Environment Programme Emission Gap Report. 2019. Available online: https://www.unenvironment.org/resources/emissions-gap-report-2019 (accessed on 28 August 2021).
- Cohen, E. Development of Israel's natural gas resources: Political, security, and economic dimensions. Resour. Policy 2018, 57, 137–146. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Can expanding natural gas consumption reduce China’s CO2 emissions? Energy Econ. 2019, 81, 393–407. [Google Scholar] [CrossRef]
- Energy Futures Initiative (EFI). The Future of Natural Gas in a Deeply Decarbonized World. Expert Workshop Summary Report; EFI: Washington, DC, USA, 2021; Available online: https://energyfuturesinitiative.org/efi-reports (accessed on 26 August 2021).
- Ahmad, A.; Zhao, Y.; Shahbaz, M.; Bano, S.; Zhang, Z.; Wang, S.; Liu, Y. Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of Indian economy. Energy Policy 2016, 96, 131–143. [Google Scholar] [CrossRef]
- McGlade, C.; Pye, S.; Ekins, P.; Bradshaw, M.; Watson, J. The future role of natural gas in the UK, A bridge to nowhere? Energy Policy 2018, 113, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Sun, R.; Wu, J.; Hochman, G. The growth and development of natural gas supply chains: The case of China and US. Energy Policy 2018, 123, 64–71. [Google Scholar] [CrossRef]
- Nagabhushan, D.; Russell, R.H.; Waltzer, K.; Thompson, J.; Beck, L.; Jaruzel, M. Carbon capture: Prospects and policy agenda for CO2-neutral power generation. Electr. J. 2021, 34, 106997. [Google Scholar] [CrossRef]
- Qin, Y.; Tong, F.; Yang, G.; Mauzerall, D.L. Challenges of using natural gas as a carbon mitigation option in China. Energy Policy 2018, 117, 457–462. [Google Scholar] [CrossRef]
- Becerra-Fernandez, M.; Cosenz, F.; Dyner, I. Modeling the natural gas supply chain for sustainable growth policy. Energy 2020, 205, 118018. [Google Scholar] [CrossRef]
- Kan, S.Y.; Chen, B.; Wu, X.F.; Chen, Z.M.; Chen, G.Q. Natural gas overview for world economy: From primary supply to final demand via global supply chains. Energy Policy 2019, 124, 215–225. [Google Scholar] [CrossRef]
- Lin, B.; Agyeman, S. Impact of natural gas consumption on sub-Saharan Africa’s CO2 emissions: Evidence and policy perspective. Sci. Total Environ. 2021, 760, 143321. [Google Scholar] [CrossRef]
- Abumunshar, M.; Aga, M.; Samour, A. Oil Price, Energy Consumption, and CO2 Emissions in Turkey. New Evidence from a Bootstrap ARDL Test. Energies 2020, 13, 5588. [Google Scholar] [CrossRef]
- Reuters. Turkey Ratifies Paris Climate Agreement; Last G20 Country to Do So. 2021. Available online: https://www.reuters.com/business/environment/turkey-ratifies-paris-climate-agreement-last-g20-country-do-so-2021-10-06/ (accessed on 17 October 2021).
- Berdysheva, S.; Ikonnikova, S. The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics. Energies 2021, 14, 5396. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy 70th Edition. 2021. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 27 August 2021).
- Organization for Economic Co-operation and Development (OECD). Chapter 2: Investment in sustainable infrastructure in Azerbaijan. In Sustainable Infrastructure for Low-Carbon Development in Central Asia and the Caucasus Hotspot Analysis and Needs Assessment; OECD: Paris, France, 2019. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Azerbaijan Energy Profile, Country Report—April 2020. Available online: https://www.iea.org/reports/azerbaijan-energy-profile (accessed on 26 October 2020).
- OECD. Azerbaijan’s sustainable infrastructure investments. In Sustainable Infrastructure for Low-Carbon Development in the EU Eastern Partnership: Hotspot Analysis and Needs Assessment; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global Energy-Related CO2 Emissions by Sector. 2021. Available online: https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector (accessed on 18 October 2021).
- The Ministry of Energy of the Republic of Azerbaijan. Agreements on Wind Power Plant Project With Capacity of 240 MW Were Signed With “Acwa Power” Company. 2020. Available online: https://minenergy.gov.az/en/xeberler-arxivi/acwa-power-sirketi-ile-qoyulus-gucu-240-mvt-olan-kulek-elektrik-stansiyasi-layihesi-uzre-muqavileler-imzalanib (accessed on 12 November 2021).
- The Ministry of Energy of the Republic of Azerbaijan. The Use of Renewable Energy Resources in Azerbaijan. 2020. Available online: https://minenergy.gov.az/en/alternativ-ve-berpa-olunan-enerji/azerbaycanda-berpa-olunan-enerji-menbelerinden-istifade (accessed on 12 November 2021).
- The Ministry of Energy of the Republic of Azerbaijan. Agreements on Solar Power Plant Project With Capacity of 230 MW Were Signed With Masdar. 2021. Available online: https://minenergy.gov.az/en/foto-qalereya/masdar-sirketi-ile-qoyulus-gucu-230-mvt-olan-gunes-elektrik-stansiyasi-layihesi-uzre-muqavileler-imzalanib (accessed on 12 November 2021).
- The Ministry of Energy of the Republic of Azerbaijan. Ministry of Energy Starts Cooperation With BP on a 240MW Solar Energy Project in the Zangilan/Jabrayil Region. 2021. Available online: https://minenergy.gov.az/en/xeberler-arxivi/energetika-nazirliyi-bp-ile-zengilancebrayil-zonasinda-240-mvt-gucunde-gunes-enerjisi-layihesi-uzre-emekdasliga-baslayir (accessed on 12 November 2021).
- International Energy Agency (IEA). Net Zero by 2050: A Roadmap for Global Energy Sector 2021. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 12 November 2021).
- UNDP. Goal 13: Climate Action. 2020. Available online: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-13-climate-action.html (accessed on 25 August 2020).
- Climate Watch. Greenhouse Gas Emissions and Emissions Targets. 2021. Available online: https://www.climatewatchdata.org/countries/AZE?source=PIK (accessed on 27 August 2021).
- Carbon Tracker Initiative. Beyond Petrostates: The Burning Need to Cut Oil Dependence in the Energy Transition. 2021. Available online: https://carbontracker.org/reports/petrostates-energy-transition-report/ (accessed on 12 March 2021).
- OECD. Forward-Looking Scenarios of Climate Finance Provided and Mobilized by Developed Countries in 2021–2025. Available online: https://www.oecd.org/environment/forward-looking-scenarios-of-climate-finance-provided-and-mobilised-by-developed-countries-in-2021-2025-a53aac3b-en.htm (accessed on 13 November 2021).
- Phillips, P.C.B.; Hansen, B.E. Statistical inference in instrumental variables regression with I (1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kim, J.; Abdel-Hameed, A.; Joseph, S.R.; Ramadhan, H.H.; Nandutu, M.; Hyun, J.-H. Modeling Long-Term Electricity Generation Planning to Reduce Carbon Dioxide Emissions in Nigeria. Energies 2021, 14, 6258. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Dong, X. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China. Sci. Total Environ. 2018, 640–641, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Sun, R.; Hochman, G. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy 2017, 141, 1466–1478. [Google Scholar] [CrossRef]
- Bastola, U.; Sapkota, P. Relationships among energy consumption, pollution emission, and economic growth in Nepal. Energy 2015, 80, 254–262. [Google Scholar] [CrossRef]
- Malzi, M.J.; Sohag, K.; Vasbieva, D.G.; Ettahir, A. Environmental policy effectiveness on residential natural gas use in OECD countries. Resour. Policy 2020, 66, 101651. [Google Scholar] [CrossRef]
- Key, A.; Mendonça, D.S.; de Andrade, G.; Barni, C.; Fernando, M.; Cezar, A.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustain. Prod. Consump. 2020, 22, 58–67. [Google Scholar]
- Li, R.; Su, M. The role of natural gas and renewable energy in curbing carbon emission: Case study of the United States. Sustainability 2017, 9, 600. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Sun, R.; Li, H.; Liao, H. Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries. Renew. Sust. Energ. Rev. 2018, 94, 419–429. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Jiang, Q. How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels. World Econ. 2020, 43, 1665–1698. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Ren, X. Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China. Energ. Econ. 2020, 90, 104830. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K. Would environmental regulation improve the greenhouse gas benefits of natural gas use? A Chinese case study. Energ. Econ. 2020, 87, 104712. [Google Scholar] [CrossRef]
- Jiang, H.D.; Xue, M.M.; Dong, K.Y.; Liang, Q.M. How will natural gas market reforms affect carbon marginal abatement costs? Evidence from China. Econ. Syst. Res. 2021, 33, 1–22. [Google Scholar] [CrossRef]
- Alkhathlan, K.; Javid, M. Energy consumption, carbon emissions and economic growth in Saudi Arabia: An aggregate and disaggregate analysis. Energ. Policy 2013, 62, 1525–1532. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia. Energ. Policy 2013, 60, 892–905. [Google Scholar] [CrossRef]
- World Bank. Population Data 2021. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=AZ (accessed on 12 July 2021).
- World Bank. GDP Per Capita 2021. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.KD?locations=AZ (accessed on 12 July 2021).
- Park, J.Y. Testing for unit roots and cointegration by variable addition. In Advances in Econometrics; Rhodes, G.F., Fomby, T.B., Eds.; JAI Press: Stamford, CT, USA, 1990; pp. 107–133. [Google Scholar]
- Pesaran, H.M.; Shin, Y. An Autoregressive Distributed Lag Modeling Approach to Cointegration Analysis. In Econometrics and Economic Theory in the 20th Century; Strom, S., Ed.; The Ragnar Frisch Centennial Symposium; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bound Testing Approaches to the Analysis of Level Relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Juselius, K. The Cointegrated VAR Model: Methodology and Applications; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Rühl, C.; Erker, T.; Oil Intensity: The Curious Relationship between Oil and GDP. M-RCBG Associate Working Paper No. 164. Available online: https://www.hks.harvard.edu/centers/mrcbg/publications/awp/awp164 (accessed on 20 July 2021).
- European Commission (EC). Annex 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/c_2019_7772_1_annex.pdf (accessed on 25 August 2020).
- State Oil Fund of the Republic of Azerbaijan (SOFAZ). Reports Archive. 2021. Available online: https://oilfund.az/en/report-and-statistics/report-archive (accessed on 29 August 2021).
- Felver, T.B. How can Azerbaijan meet its Paris Agreement commitments: Assessing the effectiveness of climate change-related energy policy options using LEAP modeling. Heliyon 2020, 6, e04697. [Google Scholar] [CrossRef]
- Ministry of Ecology and Natural Resources of Republic of Azerbaijan. Azerbaijan Announced New Commitments in the 26th UN Climate Change Conference of the Parties (COP26). 2021. Available online: http://eco.gov.az/az/nazirlik/xeber?newsID=13301 (accessed on 11 November 2021).
- Strategic Roadmap on the Development of Utilities in the Republic of Azerbaijan Approved by Decree of the President of the Republic of Azerbaijan. 2016. Available online: https://static.president.az/pdf/38542.pdf (accessed on 31 August 2021).
- Musayev, V. Strategic Roadmap on National Economy and Key Sectors of the Economy of Azerbaijan, Azerbaijan Economic Reforms Review. Center for Analysis of Economic Reforms and Communication. 2017. Available online: http://ecoreform.az/store//media/islahat_icmali/mart/strateji%20yol%20x%C9%99rit%C9%99si%20-eng1.pdf (accessed on 5 May 2020).
- Księżopolski, K.; Maśloch, G. Time Delay Approach to Renewable Energy in the Visegrad Group. Energies 2021, 14, 1928. [Google Scholar] [CrossRef]
- Pronińska, K.; Księżopolski, K. Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications. Energies 2021, 14, 4883. [Google Scholar] [CrossRef]
LCOPC | LENINT | LGDPPC | LNGSHARE | |
---|---|---|---|---|
Mean | 1.328 | −3.848 | 8.041 | 4.027 |
Maximum | 2.027 | −2.801 | 8.712 | 4.208 |
Minimum | 1.010 | −4.727 | 7.119 | 3.693 |
Std. Dev. | 0.252 | 0.685 | 0.606 | 0.161 |
Variation of coefficient | 18.943 | 17.790 | 7.534 | 3.989 |
Observations | 30 | 30 | 30 | 30 |
ADF | PP | KPSS | |||||
---|---|---|---|---|---|---|---|
Level | 1st Difference | Level | 1st Difference | Level | 1st Difference | ||
Intercept | LCOPC | −3.7146 *** | −3.283 *** | −3.6575 *** | −3.283 *** | 0.626 | 0.1480 *** |
LGDPPC | −1.718 | −1.590 | −0.742 | −1.834 | 2.622 | 0.192 *** | |
LENINT | −0.992 | −2.624 * | −0.679 | −2.655 * | 0.626 | 0.148 *** | |
LNGSHARE | −1.502 | −6.016 *** | −1.445 | −6.006 *** | 0.451 | 0.152 *** | |
Intercept and trend | LCOPC | −2.849 | −4.008 *** | −2.190 | −4.020 *** | 0.153 | 0.084 *** |
LGDPPC | −5.346 *** | −2.972 | −2.556 | −1.803 | 0.131 * | 0.136 * | |
LENINT | −2.412 | −2.564 | −1.783 | −2.536 | 0.100 *** | 0.148 * | |
LNGSHARE | −2.830 | −6.022 *** | −2.795 | −6.010 *** | 0.094 *** | 0.113 *** |
Hansen Instability * | Park Added Variables * | Engle–Granger | Phillips–Oularies | ARDLBT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Lc Statistic | Prob. | Test Value | p-Value | z-Statistic | Prob. * | Tau-Statistic Value | Prob. | F-Stat | Critical Values | |
0.109671 | >0.2 | 0.696955 | (0.4038) | −26.30617 | 0.0200 | −4.795443 | 0.0634 | 183.2534 | 10% | 3.586 |
5% | 4.306 | |||||||||
1% | 5.966 |
Dependent Variable: Per Capita Carbon Dioxide Emission (LCOPC) | ||||
---|---|---|---|---|
ARDL | DOLS | FMOLS | STSM | |
LGDPPC | 0.979 *** | 0.979 *** | 0.979 *** | 1.016 *** |
LENINT | 1.022 *** | 1.021 *** | 1.021 *** | 1.007 *** |
LNGSHARE | −0.136 *** | −0.143 *** | −0.148 *** | −0.079 to −0.090 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurbanov, S. Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan. Energies 2021, 14, 7695. https://doi.org/10.3390/en14227695
Gurbanov S. Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan. Energies. 2021; 14(22):7695. https://doi.org/10.3390/en14227695
Chicago/Turabian StyleGurbanov, Sarvar. 2021. "Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan" Energies 14, no. 22: 7695. https://doi.org/10.3390/en14227695
APA StyleGurbanov, S. (2021). Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan. Energies, 14(22), 7695. https://doi.org/10.3390/en14227695