Optimal N Application Rates on Switchgrass for Producers and a Biorefinery
Abstract
:1. Introduction
1.1. Background and Purpose
1.2. Studies of Feedstock Ash Content and Effects on Conversion
2. Methods
2.1. Conceptual Framework
2.1.1. Switchgrass Yield and Nitrogen Application
2.1.2. Ash Content and N Fertilizer Application
2.1.3. Optimizing N Fertilizer for Farms and Refinery
2.2. Data
3. Results
3.1. Switchgrass N Fertilizer and Ash Content
3.2. Farm-Gate Profitability
3.3. Biorefinery Profitability
3.4. Potential Incentive Program
4. Conclusions
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPA. Regulation of Fuels and Fuel Additives: RFS Pathways II, and Technical Amendments to the RFS Standards and E15 Misfueling Mitigation Requirements Federal Register/Vol. 79, No. 138/Friday. 18 July 2014. Available online: https://www.govinfo.gov/content/pkg/FR-2014-07-18/pdf/2014-16413.pdf (accessed on 23 August 2021).
- Faaij, A.P.C. Bio-energy in Europe: Changing Technology Choices. Energy Pol. 2006, 34, 322–342. [Google Scholar] [CrossRef] [Green Version]
- Wright, L. Historical Perspective on How and Why Switchgrass was Selected as a “Model” High-Potential Energy Crop; ORNL/TM-2007/109; Environmental Sciences Division, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2007. [Google Scholar]
- Parrish, D.J.; Casler, M.D.; Monti, A. The Evolution of Switchgrass as an Energy Crop. In Switchgrass. Green Energy and Technology; Monti, A., Ed.; Springer: London, UK, 2012. [Google Scholar] [CrossRef]
- David, K.; Ragauskas, A.J. Switchgrass as an Energy Crop for Biofuel Production: A Review of its Ligno-Cellulosic Chemical Properties. Energy Environ. Sci. R. Soc. Chem. 2010, 3, 1182–1190. [Google Scholar] [CrossRef]
- Brodowska, M.S.; Muszynski, P.; Haliniarz, M.; Brodowski, R.; Kowalczyk-Jusko, A.; Sekutowski, T.; Kurzyna-Szklarek, M. Agronomic Aspects of Switchgrass Cultivation and use for Energy Purposes. Appl. Ecol. Environ. Res. 2018, 16, 5715–5743. [Google Scholar] [CrossRef]
- Mulkey, V.R.; Owens, V.N.; Lee, D.K. Management of Switchgrass-Dominated Conservation Reserve Program Lands for Biomass Production in South Dakota. Crop Sci. 2006, 46, 712–720. [Google Scholar] [CrossRef]
- USDA. Conservation Reserve Program, Farm Service Agency. Available online: https://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/ (accessed on 15 October 2021).
- Hong, C.O.; Owens, V.N.; Bransby, D.; Farris, R.; Fike, J.; Heaton, E.; Kim, S.; Mayton, H.; Mitchell, R.; Viands, D. Switchgrass Response to Nitrogen Fertilizer across Diverse Environments in the USA: A Regional Feedstock Partnership Report. BioEnergy Res. 2014, 7, 777–788. [Google Scholar] [CrossRef]
- Fike, J.H.; Pease, J.; Owens, V.; Farris, R.; Hansen, J.; Heaton, E.A.; Hong, C.O.; Mayton, H.; Mitchell, R.B.; Viands, D.R. Switchgrass Nitrogen Response and Estimated Production Costs on Diverse Sites. GCB Bioenergy 2017, 9, 1526–1542. [Google Scholar] [CrossRef]
- Lemus, R.; Brummer, E.C.; Burras, C.L.; Moore, K.J.; Barker, M.F.; Molstad, N.E. Effects of Nitrogen Fertilization on Biomass Yield and Quality in Large Fields of Established Switchgrass in Southern Iowa, USA. Biomass Bioenergy 2008, 32. [Google Scholar] [CrossRef] [Green Version]
- Ou, L.; Kim, H.; Kelley, S.; Park, S. Impacts of Feedstock Properties on the Process Economics of Fast-Pyrolysis Biorefineries. Biofuels Bioprod. Biorefining 2018, 12. [Google Scholar] [CrossRef]
- Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway. PNL-23053, NREL/TP-5100-61178; 2013. Available online: http://www.osti.gov/bridge (accessed on 15 October 2021).
- Yildiz, G.; Ronsse, F.; Venderbosch, R.; van Duren, R.; Kersten, S.; Prins, W. Effect of Biomass Ash in Catalytic Fast Pyrolysis of Pine Wood. Appl. Catal. B Environ. 2014, 168–169, 203–211. [Google Scholar] [CrossRef]
- Li, W.; Dang, Q.; Brown, R.C.; Laird, D.; Wright, M.M. The Impacts of Biomass Properties on Pyrolysis Yields, Economic and Environmental Performance of the Pyrolysis-Bioenergy-Biochar Platform to Carbon Negative Energy. Bioresour. Technol. 2017, 241, 959–968. [Google Scholar] [CrossRef]
- Kenney, K.L.; Smith, W.A.; Gresham, G.L.; Westover, T.L. Understanding Biomass Feedstock Variability. Biofuels 2013, 4, 111–127. [Google Scholar] [CrossRef]
- Edmunds, C.W.; Reyes Molina, E.A.; André, N.; Hamilton, C.; Park, S.; Fasina, O.; Adhikrari, S.; Kelley, S.; Tumuluri, J.; Rials, T.; et al. Blended Feedstocks for Thermochemical Conversion: Biomass Characterization and Bio-Oil Production from Switchgrass-Pine Residues Blends. Front. Energy Res. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Daystar, J.; Jett, M.; Treasure, T.; Jameel, H.; Venditti, R.; Phillips, R. Economics of Cellulosic Ethanol Production in a Thermochemical Pathway for Softwood, Hardwood, Corn Stover and Switchgrass. Fuel Process. Technol. 2012, 94, 113–122. [Google Scholar] [CrossRef]
- Lacey, J.A.; Aston, J.E.; Thompson, V.S. Wear Properties of Ash Minerals in Biomass. Front. Energy Res. 2019. [Google Scholar] [CrossRef]
- Liu, Q.; Labbé, N.; Adhikari, S.; Chmely, S.C.; Abdoulmoumine, N. Hot Water Extraction as a Pretreatment for Reducing Syngas Inorganics Impurities—A Parametric Investigation on Switchgrass and Loblolly Pine Bark. Fuel 2018, 220, 177–184. [Google Scholar] [CrossRef]
- Mahmoudan, A.; Samadof, P.; Hosseinzadeh, S.; Garcia, D.A. A Multigeneration Cascade System using Ground-Source Energy with Cold Recovery: 3E analyses and multi-objective optimization. Energy 2021, 233. [Google Scholar] [CrossRef]
- Zhong, J.; Yu, T.E.; Larson, J.A.; English, B.C.; Fu, J.S.; Calcagno, J. Analysis of Environmental and Economic Tradeoffs in Switchgrass Supply Chains for Biofuel Production. Energy 2016, 107, 791–803. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Yu, T.E.; Clark, C.D.; English, B.C.; Larson, J.A.; Cheng, C.L. Effect of Land Use Change for Bioenergy Production on Feedstock Cost and Water Quality. Appl. Energy 2018, 210, 580–590. [Google Scholar] [CrossRef]
- Sharma, B.P.; Yu, T.E.; English, B.C.; Boyer, C.; Larson, J.A. Stochastic Optimization of Cellulosic Biofuel Supply Chain under Feedstock Yield Uncertainty. Energy Procedia 2019, 158, 1009–1014. [Google Scholar] [CrossRef]
- Kai, L.; Park, S.; Kelley, S.; English, B.C.; Yu, T.E.; Larson, J.A.; Yuan, Y. Impacts of Uncertain Feedstock Quality on the Economic Feasibility of Fast Pyrolysis Biorefineries with Blended Feedstocks and Decentralized Preprocessing Sites in the Southeastern United States. Glob. Chang. Biol. Bioenergy 2020, 12, 1014–1029. [Google Scholar] [CrossRef]
- Yılmaz, S.; Kumlutaş, D.; Yücekaya, U.A.; Cumbul, A.Y. Prediction of the Equilibrium Compositions in the Combustion Products of a Domestic Boiler. Energy 2021, 233. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Sun, X.; Zhao, Y.; Chong, C.; Dai, Y.; Wang, C. Multi-Criteria Decision Making of Biomass Gasification-Based Cogeneration Systems with Heat Storage and Solid Dehumidification of Desiccant Coated Heat Exchangers. Energy 2021, 233. [Google Scholar] [CrossRef]
- Cornell Law School. Legal Information Institute. How Are Equivalence Values Assigned to Renewable Fuel? Available online: https://www.law.cornell.edu/cfr/text/40/80.1415 (accessed on 15 October 2021).
- Kline, L.M.; Labbé, N.; Boyer, C.; Yu, T.E.; English, B.C.; Larson, J.A. Investigating the Impact of Biomass Quality on Near-Infrared Models for Switchgrass Feedstock. AIMS Bioeng. 2016, 3, 1–22. [Google Scholar] [CrossRef]
- Boyer, C.N.; Tyler, D.D.; Roberts, R.K.; English, B.C.; Larson, J.A. Switchgrass Yield Response Functions and Profit-Maximizing Nitrogen Rates on Four Landscapes in Tennessee. Agron. J. 2012, 104, 1579–1588. [Google Scholar] [CrossRef] [Green Version]
- Debertin, D.L. Agricultural Production Economics; Macmillan Publishing Company: New York, NY, USA, 1986; ISBN 0-02-328060-3. [Google Scholar]
- Mooney, D.F.; Roberts, R.K.; English, B.C.; Tyler, D.D.; Larson, J.A. Yield and Breakeven Price of “Alamo” Switchgrass for biofuels in Tennessee. Agron. J. 2009, 101, 1234. [Google Scholar] [CrossRef]
- English, B.C.; Larson, J.; Pasaribru, K.; Yu, T.E. Base Switchgrass System Budget, Excel Spreadsheet. 2021. Available online: https://arec.tennessee.edu/extension/decision-aid-tools/ (accessed on 6 June 2021).
- United States Environmental Protection Agency. RIN Trades and Price Information. 2021. Available online: //www.epa.gov/fuels-registration-reporting-and-compliance-help/rin-trades-and-price-information (accessed on 15 October 2021).
- McLaughlin, S.; Bouton, J.; Bransby, D.; Conger, B.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S. Developing switchgrass as a bioenergy crop. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 282–299. [Google Scholar]
N Fertilizer Rate | Mean | Std. Dev | Minimum | Maximum |
---|---|---|---|---|
(kg/ha) | Yields (Dry Metric Tons/ha) | |||
0 | 12.8 | 4.6 | 3.2 | 25.4 |
67 | 15.1 | 5.3 | 5.9 | 34.5 |
134 | 17.1 | 5.1 | 6.4 | 32.7 |
201 | 15.3 | 6.8 | 0.2 | 32.1 |
Ash Content (% biomass) | ||||
0 | 2.56 | 0.58 | 0.63 | 4.41 |
67 | 2.21 | 0.59 | 0.47 | 4.01 |
134 | 2.11 | 0.46 | 1.08 | 3.58 |
201 | 2.11 | 0.61 | 0.80 | 3.76 |
Statistic | D3 | D4 | D5 | D6 |
---|---|---|---|---|
Average | $0.47 | $0.20 | $0.19 | $0.16 |
Maximum | $0.86 | $0.54 | $0.53 | $0.47 |
Minimum | $0.25 | $0.10 | $0.09 | $0.04 |
Standard Deviation | $0.16 | $0.10 | $0.09 | $0.10 |
Estimated from Source: [34] |
Ash Dependent Variable (% Biomass) | Yield Dependent Variable (000 kg/Hectare) | |||
---|---|---|---|---|
Test Variables | Parameter Estimate | Significance Level | Parameter Estimate | Significance Level |
Intercept | 2.5568 | <0.0001 | 12.8346 | <0.0001 |
67 | −0.3465 | <0.0001 | 2.2358 | 0.0018 |
134 | −0.4434 | <0.0001 | 4.2947 | <0.0001 |
201 | −0.4481 | <0.0001 | 2.5014 | 0.0005 |
Yield Parameter Estimates (βj) Equation (3) | p-Value | Ash Content Parameter Estimates (δj) Equation (4) | p-Value | |
---|---|---|---|---|
(Dry Metric tons/ha) | (% Ash Content) | |||
Intercept | 14.18 | 0.0006 | 2.549 | 0.0001 |
N | 0.066 | 0.0001 | −0.006 | 0.0001 |
N2 | −0.00025 | 0.0001 | 0.000019 | 0.0006 |
R2 | 0.92 | 0.99 | ||
R2adj | 0.78 | 0.97 |
Parameter Estimates (Φi) | p-Value | |
---|---|---|
Intercept | 243.85 | 0.008 |
Ash | −15.318 | 0.000 |
Ash2 | 1.200 | 0.000 |
Moisture | −0.0015 | 0.988 |
Moisture2 | 0.000023 | 0.989 |
Carbon | −0.566 | 0.882 |
Carbon2 | 0.0014 | 0.973 |
R2 | 0.992 | |
R2adj | 0.991 |
PS | Optimum Yield 1 | Optimum Nitrogen Application 2 | Ash Content 3 | Farmer Net Returns 4 | Biorefinery Output (Gasoline Equiv.) 5 |
---|---|---|---|---|---|
$/mt | Dry mt | kg Per ha | % Biomass | $ Per ha | MM Liters |
PN = $0.85 per kg | |||||
40.00 | 18.13 | 90.00 | 2.17 | 10.01 | 193.2 |
60.00 | 18.38 | 104.00 | 2.13 | 375.67 | 193.5 |
80.00 6 | 18.47 | 111.00 | 2.12 | 744.32 | 193.7 |
100.00 | 18.51 | 115.00 | 2.11 | 1114.17 | 193.7 |
120.00 | 18.53 | 118.00 | 2.11 | 1484.62 | 193.8 |
PN = $1.46 per kg | |||||
40.00 | 17.23 | 59.00 | 2.26 | −35.69 | 192.2 |
60.00 | 18.00 | 84.00 | 2.18 | 318.31 | 193.0 |
80.00 | 18.25 | 96.00 | 2.15 | 681.12 | 193.3 |
100.00 | 18.37 | 103.00 | 2.14 | 1047.47 | 193.5 |
120.00 | 18.43 | 108.00 | 2.13 | 1415.59 | 193.6 |
Maximum Yield | |||||
80.00 | 18.58 | 132.00 | 2.09 | 735.60 | 193.9 |
Minimum Ash | |||||
80.00 | 18.43 | 157.00 | 2.08 | 702.08 | 194.0 |
Ash Content | Annual Biofuel Yield | Annual Value of Biofuel Production | Per Ton Benefit/Cost to Biorefinery as a Result of % Ash Content |
---|---|---|---|
(% of Biomass) | (mm Liters/Year) | $/Facility | $/Dry MT |
0.50 | 220.7 | $170,869,111 | 30.49 |
1.00 | 206.6 | $159,940,564 | 13.83 |
2.00 | 194.9 | $150,869,171 | 0.00 |
3.00 | 185.6 | $143,654,932 | −11.00 |
4.00 | 178.7 | $138,297,848 | −19.16 |
5.00 | 174.1 | $134,797,917 | −24.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robertson, K.A.; English, B.C.; Clark, C.D.; Thompson, J.M.; Jensen, K.L.; Menard, R.J.; Labbé, N. Optimal N Application Rates on Switchgrass for Producers and a Biorefinery. Energies 2021, 14, 7912. https://doi.org/10.3390/en14237912
Robertson KA, English BC, Clark CD, Thompson JM, Jensen KL, Menard RJ, Labbé N. Optimal N Application Rates on Switchgrass for Producers and a Biorefinery. Energies. 2021; 14(23):7912. https://doi.org/10.3390/en14237912
Chicago/Turabian StyleRobertson, Keven Alan, Burton C. English, Christopher D. Clark, Jada M. Thompson, Kimberly L. Jensen, Robert Jamey Menard, and Nicole Labbé. 2021. "Optimal N Application Rates on Switchgrass for Producers and a Biorefinery" Energies 14, no. 23: 7912. https://doi.org/10.3390/en14237912
APA StyleRobertson, K. A., English, B. C., Clark, C. D., Thompson, J. M., Jensen, K. L., Menard, R. J., & Labbé, N. (2021). Optimal N Application Rates on Switchgrass for Producers and a Biorefinery. Energies, 14(23), 7912. https://doi.org/10.3390/en14237912