Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger
Abstract
:1. Introduction
2. Simulation Method
2.1. Governing Equation
2.2. Boundary and Simulation Condition
2.3. Geometry Modeling
2.4. Data Analysis
2.5. Mesh Topology and Validation
3. Results and Discussion
3.1. Thermal Performance of PHX
3.2. Temperature and Velocity Distribution at the Channel of PHX
3.3. Non-Uniformity of Outlet Temperature in the PHX
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | Greek Symbols | ||
Al | Effective corrugated area (m2) | Ratio of velocity or temperature | |
Alp | Projected surface area (m2) | Average ratio of velocity or temperature | |
b | Corrugation depth (m) | Effectiveness | |
C | Heat capacity rate (W/K) | Non-uniformity | |
cp | Specific heat (J/kgK) | Viscosity (Pas) | |
Dh | Hydrodynamic diameter (m) | Density (kg/m3) | |
Dp | Port diameter (m) | ||
h | Heat transfer coefficient (W/m2K) | Subscript | |
I | Turbulence intensity | avg | Average |
k | Thermal conductivity (W/mK) | c | Cold side |
Lp | Port to port length (m) | ch | Channel |
Lv | Chevron area length (m) | h | Hot side |
Lw | Port to port plate width (m) | Inlet | |
Mass flow rate (kg/s) | max | Maximum | |
Nu | Nusselt number | min | Minimum |
Re | Reynolds number | Outlet | |
Pr | Prandtl number | pipe | Pipe |
Temperature (K) | |||
t | Thickness of the plate (m) | ||
Q | Amount of heat transfer (W) |
References
- Payambarpour, S.A.; Shokouhmand, H.; Ahmadi, M.H.; Assad, M.E.H.; Chen, L. Effect of wetness pattern on the fin-tube heat exchanger performance under partially wet-surface condition. Therm. Sci. Eng. Prog. 2020, 19, 100619. [Google Scholar] [CrossRef]
- Payambarpour, S.A.; Nazari, M.A.; Ahmadi, M.H.; Chamkha, A.J. Effect of partially wet-surface condition on the performance of fin-tube heat exchanger. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 3938–3958. [Google Scholar] [CrossRef]
- Hu, W.-L.; Ma, A.-J.; Guan, Y.; Cui, Z.-J.; Zhang, Y.-B.; Wang, J. Experimental Study of the Air Side Performance of Fin-and-Tube Heat Exchanger with Different Fin Material in Dehumidifying Conditions. Energies 2021, 14, 7030. [Google Scholar] [CrossRef]
- Kim, D.-K. Comparison of optimal thermal performances of finned tube annuli with various fin shapes. Int. J. Heat Mass Transf. 2021, 175, 121402. [Google Scholar] [CrossRef]
- Dinsing, N.; Schmitz, N.; Schubert, C.; Pfeifer, H. Development of an Efficient Modelling Approach for Fin-Type Heat-Exchangers in Self-Recuperative Burners. Energies 2021, 14, 6873. [Google Scholar] [CrossRef]
- Goodarzi, M.; Amiri, A.; Goodarzi, M.S.; Safaei, M.R.; Karimipour, A.; Languri, E.M.; Dahari, M. Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int. Commun. Heat Mass Transf. 2015, 66, 172–179. [Google Scholar] [CrossRef]
- Bahmani, M.H.; Sheikhzadeh, G.; Zarringhalam, M.; Akbari, O.A.; Alrashed, A.A.A.A.; Shabani, G.A.S.; Goodarzi, M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv. Powder Technol. 2018, 29, 273–282. [Google Scholar] [CrossRef]
- Cademartori, S.; Cravero, C.; Marini, M.; Marsano, D. CFD Simulation of the Slot Jet Impingement Heat Transfer Process and Application to a Temperature Control System for Galvanizing Line of Metal Band. Appl. Sci. 2021, 11, 1149. [Google Scholar] [CrossRef]
- Huang, H.; Sun, T.; Zhang, G.; Li, D.; Wei, H. Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. Int. J. Heat Mass Transf. 2019, 139, 700–712. [Google Scholar] [CrossRef]
- Hayes, A.M.; Khan, J.A.; Shaaban, A.H.; Spearing, I.G. The thermal modeling of a matrix heat exchanger using a porous medium and the thermal non-equilibrium model. Int. J. Therm. Sci. 2008, 47, 1306–1315. [Google Scholar] [CrossRef]
- Wang, C.C.; Yang, K.S.; Tsai, J.S.; Chen, I.Y. Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header. Appl. Therm. Eng. 2011, 31, 3226–3234. [Google Scholar] [CrossRef]
- Wang, C.C.; Yang, K.S.; Tsai, J.S.; Chen, I.Y. Characteristics of flow distribution in compact parallel flow heat exchangers, part II: Modified inlet header. Appl. Therm. Eng. 2011, 31, 3235–3242. [Google Scholar] [CrossRef]
- Huang, C.H.; Wang, C.H. The study on the improvement of system uniformity flow rate for U-type compact heat exchangers. Int. J. Heat Mass Transf. 2013, 63, 1–8. [Google Scholar] [CrossRef]
- Said, S.A.M.; Ben-Mansour, R.; Habib, M.A.; Siddiqui, M.U. Reducing the flow mal-distribution in a heat exchanger. Comput. Fluids 2015, 107, 1–10. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Zhou, S.Q.; Li, Z.X.; Chen, L.G. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger. Int. J. Heat Mass Transf. 2002, 45, 2119–2127. [Google Scholar] [CrossRef]
- Labbadlia, O.; Laribi, B.; Chetti, B.; Hendrick, P. Numerical study of the influence of tube arrangement on the flow distribution in the header of shell and tube heat exchangers. Appl. Therm. Eng. 2017, 126, 315–321. [Google Scholar] [CrossRef]
- Wang, K.; Tu, X.C.; Bae, C.H.; Kim, H.B. Optimal design of porous baffle to improve the flow distribution in the tube-side inlet of a shell and tube heat exchanger. Int. J. Heat Mass Transf. 2015, 80, 865–872. [Google Scholar] [CrossRef]
- Kim, M.-H.; Nguyen, V.T.; Im, S.; Jung, Y.; Choi, S.-R.; Kim, B.-J. Experimental Validation of Flow Uniformity Improvement by a Perforated Plate in the Heat Exchanger of SFR Steam Generator. Energies 2021, 14, 5846. [Google Scholar] [CrossRef]
- Wen, J.; Li, Y.; Zhou, A.; Zhang, K.; Wang, J. PIV experimental investigation of entrance configuration on flow maldistribution in plate-fin heat exchanger. Cryogenics 2006, 46, 37–48. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wen, J.; Ma, Y. Experimental investigation of header configuration on two-phase flow distribution in plate-fin heat exchanger. Int. Commun. Heat Mass Transf. 2010, 37, 116–120. [Google Scholar] [CrossRef]
- Zhang, Z.; Mehendale, S.; Tian, J.J.; Li, Y.Z. Experimental investigation of distributor configuration on flow maldistribution in plate-fin heat exchangers. Appl. Therm. Eng. 2015, 85, 111–123. [Google Scholar] [CrossRef]
- Yang, H.; Wen, J.; Gu, X.; Liu, Y.; Wang, S.; Cai, W.; Li, Y. A mathematical model for flow maldistribution study in a parallel plate-fin heat exchanger. Appl. Therm. Eng. 2017, 121, 462–472. [Google Scholar] [CrossRef]
- Jin, S.; Hrnjak, P. Effect of end plates on heat transfer of plate heat exchanger. Int. J. Heat Mass Transf. 2017, 108, 740–748. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Peris, E.; Alvarez-Piñeiro, L.; Schnabel, L.; Corberan, J.M. Refrigerant maldistribution in brazed plate heat exchanger evaporators. Part B: Analysis of the influence of maldistribution on the evaporator performance. Int. J. Refrig. 2021, 131, 312–321. [Google Scholar] [CrossRef]
- Navarro-Peris, E.; Alvarez-Piñeiro, L.; Albaladejo, P.; Schnabel, L.; Corberan, J.M. Refrigerant maldistribution in brazed plate heat exchanger evaporators. Part A: Testing campaign and experimental results. Int. J. Refrig. 2021, 131, 119–128. [Google Scholar] [CrossRef]
- Bobbili, P.R.; Sunden, B.; Das, S.K. An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers. Appl. Therm. Eng. 2006, 26, 1919–1926. [Google Scholar] [CrossRef]
- Bassiouny, M.K.; Martin, H. Flow distribution and pressure drop in plate heat exchangers—I U-type arrangement. Chem. Eng. Sci. 1984, 39, 693–700. [Google Scholar] [CrossRef]
- Rao, B.P.; Das, S.K. An Experimental Study on the Influence of Flow Maldistribution on the Pressure Drop Across a Plate Heat Exchanger. J. Fluids Eng. 2004, 126, 680–691. [Google Scholar] [CrossRef]
- Tereda, F.A.; Srihari, N.; Sunden, B.; Das, S.K. Experimental Investigation on Port-to-Channel Flow Maldistribution in Plate Heat Exchangers. Heat Transf. Eng. 2007, 28, 435–443. [Google Scholar] [CrossRef]
- Rao, B.P.; Das, S.K. Effect of Flow Distribution to the Channels on the Thermal Performance of the Multipass Plate Heat Exchangers. Heat Transf. Eng. 2004, 25, 48–59. [Google Scholar] [CrossRef]
- Brenk, A.; Pluszka, P.; Malecha, Z. Numerical Study of Flow Maldistribution in Multi-Plate Heat Exchangers Based on Robust 2D Model. Energies 2018, 11, 3121. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-N.; Lee, J.-P.; Park, M.-H.; Jin, B.-J.; Yun, T.-J.; Song, Y.-H.; Kim, I.-S. A study on 3D numerical model for plate heat exchanger. Procedia Eng. 2017, 174, 188–194. [Google Scholar] [CrossRef]
- Yadav, V.; Baghel, K.; Kumar, R.; Kadam, S.T. Numerical investigation of heat transfer in extended surface microchannels. Int. J. Heat Mass Transf. 2016, 93, 612–622. [Google Scholar] [CrossRef]
- Gulenoglu, C.; Akturk, F.; Aradag, S.; Sezer Uzol, N.; Kakac, S. Experimental comparison of performances of three different plates for gasketed plate heat exchangers. Int. J. Therm. Sci. 2014, 75, 249–256. [Google Scholar] [CrossRef]
- Jurtz, N.; Kraume, M.; Wehinger, G.D. Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev. Chem. Eng. 2019, 35, 139–190. [Google Scholar] [CrossRef] [Green Version]
Contents | Cold Side | Hot Side | ||
---|---|---|---|---|
Mass Flow Rate (kg/s) | Tc, i (K) | Mass Flow Rate (kg/s) | Th,i (K) | |
Mass flow rate | 0.03–0.15 | 293.15 | 0.03 | 313.15 |
Temperature difference between cold and hot side | 0.15 | 283.15–298.15 | 0.03 | 313.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, J.; Lee, G.; Oh, D.-w.; Cho, H. Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger. Energies 2021, 14, 8280. https://doi.org/10.3390/en14248280
Ham J, Lee G, Oh D-w, Cho H. Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger. Energies. 2021; 14(24):8280. https://doi.org/10.3390/en14248280
Chicago/Turabian StyleHam, Jeonggyun, Gonghee Lee, Dong-wook Oh, and Honghyun Cho. 2021. "Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger" Energies 14, no. 24: 8280. https://doi.org/10.3390/en14248280
APA StyleHam, J., Lee, G., Oh, D.-w., & Cho, H. (2021). Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger. Energies, 14(24), 8280. https://doi.org/10.3390/en14248280