Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications
Abstract
:1. Introduction
2. Experiment
2.1. Nanocomposite Synthesis
2.2. Specific Heat Capacity Measurement
2.3. Measurement Uncertainty
3. Results and Discussions
3.1. Specific Heat Capacity
3.2. Material Characterization
3.3. Mechanism Analysis
- (1)
- Nanoparticles with higher SHCs. The nanoparticle has a higher SHC than that of the corresponding bulk materials. For instance, Wang et al. [35] demonstrated that the SHC of Al2O3 is 6~23% higher than that of the Al2O3 bulk. Additionally, Zhou et al. [36] also obtained a higher SHC for the CuO nanoparticle by theoretical calculation.
- (2)
- Interfacial thermal resistance. Some researchers believe that there is an interfacial thermal resistance between the nanoparticle and the base salt, which results from the interaction between the nanoparticles and the base salt. Some people compare the interfacial thermal resistance as a kind of virtual spring-mass system [20].
- (3)
- Compressed layer. There is a base salt layer around the nanoparticle with a higher density than that of the base salt far away from the nanoparticle, it is hence named the “compressed layer”, and the researchers believe this layer has an enhancement in thermal properties compared to those of the bulk base salt.
3.3.1. Details of MD Simulation
3.3.2. Effects of Nanoparticle SHC
3.3.3. Effects of Interaction between Nanoparticle and Base Salt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peiro, G.; Prieto, C.; Gasia, J.; Jove, A.; Miro, L.; Cabeza, L.F. Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renew. Energy 2018, 121, 236–248. [Google Scholar] [CrossRef]
- Janz, G.J. Molten Salts Handbook; Elsevier: Amsterdam, The Netherlands, 1967. [Google Scholar]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar]
- Chen, X.; Wu, Y.-t.; Wang, X.; Ma, C.-f. Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting. Solar Energy Mater. Solar Cells 2018, 176, 42–48. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.; Alexiadis, A.; Ding, Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures. Solar Energy Mater. Solar Cells 2019, 200, 109897. [Google Scholar] [CrossRef]
- Mohan, G.; Venkataraman, M.B.; Coventry, J. Sensible energy storage options for concentrating solar power plants operating above 600 °C. Renew. Sustain. Energy Rev. 2019, 107, 319–337. [Google Scholar] [CrossRef]
- Sohal, M.S.; Ebner, M.A.; Sabharwall, P.; Sharpe, P. Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2010. [Google Scholar]
- Arthur, O.; Karim, M.A. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew. Sust. Energ. Rev. 2016, 55, 739–755. [Google Scholar] [CrossRef] [Green Version]
- Araki, N.; Matsuura, M.; Makino, A.; Hirata, T.; Kato, Y. Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts. Int. J. Thermophys. 1988, 9, 1071–1080. [Google Scholar] [CrossRef]
- Nunes, V.; Queirós, C.; Lourenço, M.; Santos, F.; De Castro, C.N. Molten salts as engineering fluids–A review: Part I. Molten alkali nitrates. Appl. Energy 2016, 183, 603–611. [Google Scholar]
- Serrano-López, R.; Fradera, J.; Cuesta-López, S. Molten salts database for energy applications. Chem. Eng. Process. Process. Intensif. 2013, 73, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Yin, Y.; Qin, B.; Wang, W.; Ding, J.; Lu, J. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity. Renew. Energy 2020, 145, 2435–2444. [Google Scholar] [CrossRef]
- Sang, L.; Ai, W.; Wu, Y.; Ma, C. SiO2-ternary carbonate nanofluids prepared by mechanical mixing at high temperature: Enhanced specific heat capacity and thermal conductivity. Solar Energy Mater. Solar Cells 2019, 203, 110193. [Google Scholar] [CrossRef]
- Dudda, B.; Shin, D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int. J. Therm. Sci. 2013, 69, 37–42. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Du, X.; Yu, G.; Wu, H. Dynamic simulation of steam generation system in solar tower power plant. Renew. Energy 2019, 135, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Sun, M.; Wu, Y.; Xu, P.; Xu, Q.; Li, C.; Ding, Y.; Ma, C. Effects of Synthesis Methods on Thermal Performance of Nitrate Salt Nanofluids for Concentrating Solar Power. Energy Fuels 2020, 34, 11606–11619. [Google Scholar] [CrossRef]
- Seo, J.; Shin, D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3–NaNO3–KNO3) salt eutectic for thermal energy storage. Appl. Therm. Eng. 2016, 102, 144–148. [Google Scholar] [CrossRef]
- Sang, L.; Liu, T. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles. Solar Energy Mater. Solar Cells 2017, 169, 297–303. [Google Scholar] [CrossRef]
- Luo, Y.; Du, X.; Awad, A.; Wen, D. Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles. Int. J. Heat Mass Transf. 2017, 104, 658–664. [Google Scholar]
- Shin, D.; Banerjee, D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int. J. Heat Mass Transf. 2011, 54, 1064–1070. [Google Scholar] [CrossRef]
- Mondragon, R.; Julia, J.E.; Barba, A.; Jarque, J.C. Characterization of silica–Water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder Technol. 2012, 224, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, Y.; Li, K. Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes. J. Environ. Anal. Toxicol 2012, 2, 158–162. [Google Scholar]
- Andreu-Cabedo, P.; Mondragon, R.; Hernandez, L.; Martinez-Cuenca, R.; Cabedo, L.; Enrique Julia, J. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, B.; Du, X.; Wu, H. Experimental investigation on stability of thermal performances of solar salt based nanocomposite. Renew. Energy 2020, 146, 816–827. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Convers. Manag. 2017, 142, 366–373. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. Solar Energy Mater. Solar Cells 2019, 192, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Testing ASF. Materials. Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Palmer, M. Propagation of Uncertainty through Mathematical Operations. pp. 1–7. Available online: http://web.mit.edu/fluids-modules/www/exper_techniques/ (accessed on 29 January 2021).
- Betts, M.R. The effects of nanoparticle augmentation of nitrate thermal storage materials for use in concentrating solar power applications. Master’s Thesis, Texas A & M University, College Station, TX, USA, 2011. [Google Scholar]
- Ho, M.X.; Pan, C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. Int. J. Heat Mass Transf. 2014, 70, 174–184. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wu, Y.; Lu, Y.; Zhi, R.; Wang, X.; Ma, C.J.S.E. Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt. Solar Energy 2019, 183, 776–781. [Google Scholar] [CrossRef]
- Qiao, G.; Lasfargues, M.; Alexiadis, A.; Ding, Y. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids. Appl. Therm. Eng. 2017, 111, 1517–1522. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Laboratory: Lemont, IL, USA, 1995. [Google Scholar]
- Wang, L.; Tan, Z.; Meng, S.; Liang, D.; Li, G. Enhancement of molar heat capacity of nanostructured Al2O3. J. Nanopart. Res. 2001, 3, 483–487. [Google Scholar]
- Wang, B.-X.; Zhou, L.-P.; Peng, X.-F. Surface and Size Effects on the Specific Heat Capacity of Nanoparticles. Int. J. Thermophys. 2006, 27, 139–151. [Google Scholar] [CrossRef]
- Cui, L.; Feng, Y.; Tang, J.; Tan, P.; Zhang, X. Heat conduction in coaxial nanocables of Au nanowire core and carbon nanotube shell: A molecular dynamics simulation. Int. J. Therm. Sci. 2016, 99, 64–70. [Google Scholar] [CrossRef]
- Li, Z.; Cui, L.; Li, B.; Du, X. Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics. Int. J. Heat Mass Transf. 2020, 153, 119578. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar]
- Jund, P.; Jullien, R. The glass transition in a model silica glass: Evolution of the local structure. Philos. Mag. A 1999, 79, 223–236. [Google Scholar] [CrossRef]
- Shi, D.; Guo, Z.; Bedford, N. 1—Basic Properties of Nanomaterials. Nanomater. Devices 2015, 1–23. [Google Scholar] [CrossRef]
- Qiao, G.; Alexiadis, A.; Ding, Y. Simulation study of anomalous thermal properties of molten nitrate salt. Powder Technol. 2017, 314, 660–664. [Google Scholar] [CrossRef]
- Yuan, F.; Li, M.-J.; Qiu, Y.; Ma, Z.; Li, M.-J. Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes. Appl. Energy 2019, 250, 1481–1490. [Google Scholar] [CrossRef]
Object | SiO2 Nanoparticle | NaNO3 | Al2O3 Nanoparticle | Solar Salt |
---|---|---|---|---|
Epe (J) | −2.133E-18 | −2.190E-19 | 5.735E-18 | −2.646E-19 |
Energy (J) | Epe | Eke | Ecoul | Evdwl | Ebond | Eangle | |
---|---|---|---|---|---|---|---|
Substance | |||||||
NP | −2.134E-18 | 1.186E-20 | −1.870E-18 | −2.636E-19 | - | - | |
BS | −2.195E-19 | 1.187E-20 | −2.430E-19 | 1.746E-20 | 3.477E-21 | 6.560E-21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Cui, L.; Li, B.; Du, X. Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications. Energies 2021, 14, 703. https://doi.org/10.3390/en14030703
Li Z, Cui L, Li B, Du X. Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications. Energies. 2021; 14(3):703. https://doi.org/10.3390/en14030703
Chicago/Turabian StyleLi, Zhao, Liu Cui, Baorang Li, and Xiaoze Du. 2021. "Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications" Energies 14, no. 3: 703. https://doi.org/10.3390/en14030703
APA StyleLi, Z., Cui, L., Li, B., & Du, X. (2021). Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications. Energies, 14(3), 703. https://doi.org/10.3390/en14030703