The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway
Abstract
:1. Public Transport and Global Warming
1.1. Current Status and Future Plans
1.1.1. Transportation Emissions in Norway
1.1.2. Current Public Transportation Fleets
1.1.3. Political, Social and Economic Strategies
1.2. Objective
2. Greenhouse Gases and Energy
2.1. GHG and LCA
2.2. Energy
2.3. Power Market
3. Bus Production and Emissions
3.1. Electric Public Transport
3.2. Production Theory
3.3. Bus Production
3.4. Component Production
3.5. Material Processing
3.5.1. Primary Production
3.5.2. Secondary Production
3.6. Battery Production
4. Case Study-Trondheim, Norway
4.1. Bus Model
4.1.1. Battery and Bus Construction Estimations
4.1.2. Material Emissions
4.1.3. Component Emissions
4.1.4. Carbon Payback Time
4.1.5. Lifetime Emissions
4.2. Results
4.2.1. Production Emissions
4.2.2. Lifetime Emissions
4.3. Sensitivity
4.3.1. Primary Material Processing on Bus Models
4.3.2. Secondary Material Processing on 2019 Bus Fleet
4.3.3. Battery
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Regulation of the European Parliament and of the Council on Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law); The Publications Office of the European Union: Brussels, Belgium, 2020. [Google Scholar]
- Norwegian Environment Agency. Klimakur 2030—Tiltak og virkemidler mot 2030. M-1625. 2020. Available online: https://www.miljodirektoratet.no/klimakur (accessed on 4 April 2020).
- Intergovernmental Panel on Climate Change. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: New York, NY, USA, 2014; ISBN 9781107654815. [Google Scholar]
- Norwegian Environment Agency. Klimagassutslipp fra Transport. Available online: https://miljostatus.miljodirektoratet.no/tema/klima/norske-utslipp-av-klimagasser/klimagassutslipp-fra-transport/ (accessed on 27 April 2020).
- EURACTIV, EU. Parliament Votes for 60% Carbon Emissions Cut by 2030—EURACTIV.com. Available online: https://www.euractiv.com/section/energy-environment/news/eu-parliament-votes-for-60-carbon-emissions-cut-by-2030/ (accessed on 5 November 2020).
- Regis, N.; Heinrich, M.T.E.E.; Kelch, F.; Magne, P.; Emadi, A.; Zhang, M.; Huang, Q.; Liu, S.; Li, H.; Khoury, J.; et al. Electrification of the transport system: Studies and reports. Renew. Sustain. Energy Rev. 2017, 10, 1–49. [Google Scholar] [CrossRef]
- Norsk Elbilforening Norway Reaches Historical Electric Car Market Share|Norsk Elbilforening. Available online: https://elbil.no/norway-reaches-historic-electric-car-market-share/ (accessed on 28 September 2019).
- Statistic Norway. Utslipp til Luft. Available online: https://www.ssb.no/klimagassn (accessed on 23 April 2020).
- Statistic Norway. Elbiler Reduserer Utslipp per Personkilometer. Available online: https://www.ssb.no/transport-og-reiseliv/artikler-og-publikasjoner/elbiler-reduserer-utslipp-per-personkilometer (accessed on 23 April 2020).
- Norwegian Environment Agency. Utslipp av Klimagasser i Kommuner. Available online: https://www.miljodirektoratet.no/tjenester/klimagassutslipp-kommuner/?area=705§or=-2 (accessed on 12 May 2020).
- Danchell, J. A Overview of Zero Emission Buses in the Nordic Countries—by the End of 2019; Sustainable Bus: Copenhagen, Denmark, 2019. [Google Scholar]
- Sustainable Bus. Electric Bus, Main Fleets and Projects around the World. Available online: https://www.sustainable-bus.com/electric-bus/electric-bus-public-transport-main-fleets-projects-around-world/ (accessed on 10 April 2020).
- Sustainable Bus. 500,000 e-Buses Today in Operation. They’ll Take 67 of the Global Bus Fleet by 2040, BNEF Says. Available online: https://www.sustainable-bus.com/news/electric-vehicle-outlook-2020-bnef-electric-buses/ (accessed on 10 April 2020).
- Volvo. Volvo Receives Order for 17 Electric Buses From Oslo in Norway. Available online: https://www.volvobuses.com/en-en/news/2018/jun/volvo-recieves-order-for-electric-buses.html (accessed on 20 July 2020).
- Fortune Business Insights Global. Electric Bus Market Size, Share and Industry Analysis, by Type (Battery Electric Vehicle, Plug-in Hybrid Electric Vehicle, Fuel Cell Electric Vehicle), and Regional Forecasts, 2020–2027; Fortune Business Insights: Maharashtra, India, 2019. [Google Scholar]
- Trøndelag Fylkeskommune. Sånn gjør vi det; Trøndelag Fylkeskommune: Trøndelag, Norway, 2020. [Google Scholar]
- Trondheim, kommune. Kommunedelplan: Energi og Klima 2017–2030; Trondheim kommune: Trondheim, Norway, 2017. [Google Scholar]
- Sadik-Zada, E.R.; Gatto, A. The puzzle of greenhouse gas footprints of oil abundance. Socioecon. Plann. Sci. 2020, 100936. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Loewenstein, W. Drivers of CO2-Emissions in Fossil Fuel abundant settings: (Pooled) mean group and nonparametric panel analyses. Energies 2020, 13, 3956. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R. Natural resources, technological progress, and economic modernization. Rev. Dev. Econ. 2020. [Google Scholar] [CrossRef]
- EPA. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 27 March 2020).
- Barbera, A.C.; Vymazal, J.; Maucieri, C. Greenhouse Gases Formation and Emission. In Enclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Oxford, UK, 2019; pp. 329–333. ISBN 978-0-444-64130-4. [Google Scholar]
- Houghton, J.E.T.; Ding, Y.; Griggs, D.; Noguer, M.; van der Linden, P.; Dai, X.; Maskell, M.; Johnson, C. Climate change 2001: The scientific basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE: Cambridge, UK, 2001; Volume 881, p. 881. [Google Scholar]
- EPA. Understanding Global Warming Potentials. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 27 March 2020).
- Klopffer, W.; Grahl, B. Life Cycle Assessment (LCA)—A Guide to Best Practice; Wiley-VCH: Weinheim, Germany, 2014; ISBN 9783527330997. [Google Scholar]
- Life Cycle Initiative. What is Life Cycle Thinking? Available online: https://www.lifecycleinitiative.org/starting-life-cycle-thinking/what-is-life-cycle-thinking/ (accessed on 27 April 2020).
- Ellen MacArthur Foundation. What Is a Circular Economy? Available online: https://www.ellenmacarthurfoundation.org/circular-economy/concept (accessed on 27 April 2020).
- Kukreja, B. Life Cycle Analysis of Electric Vehicles—Quantifying the Impact; UBC Sustainability: Vancouver, WA, USA, 2018. [Google Scholar]
- National Renewable Rnergy Laboratory. Life Cycle Greenhouse Gas Emissions from Electricity Generation; Natl. Renew. Energy Lab.: Denver, CO, USA, 2013. [Google Scholar]
- The Norwegian Water Resources and Energy Directorate. Nasjonal varedeklarasjon 2018. Available online: https://www.nve.no/energiforsyning/varedeklarasjon/nasjonal-varedeklarasjon-2018/ (accessed on 3 April 2020).
- Department of Energy. Energy Sources. Available online: https://www.energy.gov/science-innovation/energy-sources (accessed on 1 July 2020).
- Gregorie, E.F.J.; Lamb, J.J.; Lien, K.M.; Pollet, B.; Burheim, O.S. Hydrogen and biogas. In Micro-Optics and Energy: Sensors for Energy Devices; Springer: Berlin, Germany, 2020. [Google Scholar]
- Lamb, J.J.; Hillestad, M.; Rytter, E.; Bock, R.; Nordgård, A.S.R.; Lien, K.M.; Burheim, O.S.; Pollet, B. Traditional routes for hydrogen production and carbon conversion. In Hydrogen, Biomass and Bioenergy: Integration Pathways for Renewable Energy Applications; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Lamb, J.J. Impact assessment. In Anaerobic Digestion—From Biomass to Biogas; SCIO Publishing: Trondheim, Norway, 2020; pp. 391–414. ISBN 9788269203325. [Google Scholar]
- Lamb, J.J. Uses of biogas and biomethane. In Anaerobic Digestion—From Biomass to Biogas; SCIO Publishing: Trondheim, Norway, 2020; Volume 1, pp. 333–364. ISBN 9788269203325. [Google Scholar]
- Heyne, S.; Bokinge, P.; Nyström, I. Global Production of Bio-Methane and Synthetic Fuels -Overview; CIT Industriell energi AB: Göteborg, Sweden, 2019. [Google Scholar]
- Rytter, E.; Hillestad, M.; Austbø, B.; Lamb, J.J.; Sarker, S. Thermochemical production of fuels. In Hydrogen, Biomass and Bioenergy: Integration Pathways for Renewable Energy Applications; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Assosiation of Issuing Bodies Renewable Energy Guarantees of Origin. Available online: https://www.aib-net.org/certification/certificates-supported/renewable-energy-guarantees-origin (accessed on 2 April 2020).
- The Norwegian Water Resources and Energy Directorate. Opprinnelsesgarantier. Available online: https://www.nve.no/energiforsyning/opprinnelsesgarantier/?ref=mainmenu (accessed on 27 March 2020).
- Oslo Economics. Analysis of the Trade in Guarantees of Origin. 2018. Available online: https://www.energinorge.no/contentassets/ac0b5a4fc38b4111b9195a77737a461e/analysis-of-the-trade-in-gos.-oslo-economics.pdf (accessed on 24 April 2020).
- Rapa, M.; Gobbi, L.; Ruggieri, R. Environmental and economic sustainability of electric vehicles: Life cycle assessment and life cycle costing evaluation of electricity sources. Energies 2020, 13, 6292. [Google Scholar] [CrossRef]
- Malandrino, O.; Rapa, M.; Ruggieri, R.; Vinci, G. Is the electric mobility really green? A life cycle thinking approach. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–4. [Google Scholar]
- Assosiaction of Issuing Bodies. European Residual Mixes. Results of the Calculation of Residual Mixes for the Calendar Year 2018; Assosiaction of Issuing Bodies: Brussels, Belgium, 2019. [Google Scholar]
- EEA. CO2 Intensity of Electricity Generation in the EU. Available online: https://www.eea.europa.eu/data-and-maps/data/co2-intensity-of-electricity-generation (accessed on 30 April 2020).
- EPA. Emission Factors for Greenhouse Gas Inventories; 2020. Available online: https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf (accessed on 15 April 2020).
- Climate Transparency. Brown to Green: The G20 Transition to a Low-Carbon Economy; Climate Transparency: Berlin, Germany, 2018. [Google Scholar]
- EVgo Types of Electric Vehicles. Available online: https://www.evgo.com/why-evs/types-of-electric-vehicles/ (accessed on 14 May 2020).
- MIT Electric Vehicle Team. Electric Powertrains. 2018. Available online: http://web.mit.edu/evt/summary_powertrains.pdf (accessed on 20 April 2020).
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Nordelöf, A.; Romare, M.; Tivander, J. Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel. Transp. Res. Part D Transp. Environ. 2019, 75, 211–222. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Kelly, J.C.; James, C.; Gallagher, K.G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 2015, 8, 158–168. [Google Scholar] [CrossRef]
- Kim, H.C.; Wallington, T.J.; Arsenault, R.; Bae, C.; Ahn, S.; Lee, J. Cradle-to-gate emissions from a commercial electric vehicle Li-ion battery: A comparative analysis. Environ. Sci. Technol. 2016, 50, 7715–7722. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, J. Battery Megafactory Forecast: 400% Increase in Capacity to 1 TWh by 2028. Available online: https://www.visualcapitalist.com/battery-megafactory-forecast-1-twh-capacity-2028/ (accessed on 29 April 2020).
- Peters, J.F.; Weil, M. Providing a common base for life cycle assessments of Li-Ion batteries. J. Clean. Prod. 2018, 171, 704–713. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters–A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Ambrose, H.; Kendall, A. Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility. Transp. Res. Part D Transp. Environ. 2016, 47, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Ellingsen, L.A.-W.; Singh, B.; Strømman, A.H. The size and range effect: Lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 2016, 11, 54010. [Google Scholar] [CrossRef]
- Ellingsen, L.A.W.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Northvolt a Blueprint for Next-Generation Battery Manufacturing. Available online: https://northvolt.com/production (accessed on 11 May 2020).
- Klingenberg, M.; Den Svenske Monsterfabrikken Skal Produsere Verdens Grønneste Batterier. Teknisk Ukeblad; 2020. Available online: https://www.tu.no/artikler/den-svenske-monsterfabrikken-skal-produsere-verdens-gronneste-batterier/490502 (accessed on 3 May 2020).
- Sustainable Bus. Electric Bus Market is Booming, We Are Ready. Interview with Akasol’s CEO Sven Schulz. Available online: https://www.sustainable-bus.com/news/electric-bus-market-is-booming-we-are-ready-interview-with-akasols-ceo-sven-schulz/ (accessed on 20 March 2020).
- Kärnä, P. Carbon Footprint of the Raw Materials of an Urban Transit Bus: Case study: Diesel, Hybrid, Electric and Converted Electric Bus; LAHTI UNIVERSITY OF APPLIED SCIENCES: Lahti, Finland, 2012. [Google Scholar]
- WORLD COAL ASSOCIATION How is Steel Produced? Available online: https://www.worldcoal.org/coal/uses-coal/how-steel-produced (accessed on 17 March 2020).
- Bell, T. The Modern Steel Manufacturing Process. Available online: https://www.thebalance.com/steel-production-2340173 (accessed on 17 March 2020).
- Hydro Aluminium Life Cycle. Available online: https://www.hydro.com/en-NO/about-aluminium/aluminium-life-cycle/ (accessed on 23 March 2020).
- All About Aluminium HOW ALUMINIUM IS PRODUCED. Available online: https://www.aluminiumleader.com/production/how_aluminium_is_produced/ (accessed on 23 March 2020).
- Lowe, M.; Tokuoka, S.; Trigg, T.; Gereffi, G. Lithium-ion Batteries for Electric Vehicles: The U.S. Value Chain; Center on Globalization, Governance & Competitiveness Duke University: Durham, NC, USA, 2010. [Google Scholar]
- Schünemann, J.-H. Modell zur Bewertung der Herstellkosten von Lithiumionenbatteriezellen; Technische Universität Braunschweig: Schierke, Germany, 2015; ISBN 3868447032. [Google Scholar]
- Pettinger, K.H.; Dong, W. When does the operation of a battery become environmentally positive? J. Electrochem. Soc. 2017, 164, A6274–A6277. [Google Scholar] [CrossRef]
- Yuan, C.; Deng, Y.; Li, T.; Yang, F. Manufacturing energy analysis of lithium ion battery pack for electric vehicles. CIRP Ann. 2017, 66, 53–56. [Google Scholar] [CrossRef]
- Thomitzek, M.; Von Drachenfels, N.; Cerdas, F.; Herrmann, C.; Thiede, S. Simulation-based assessment of the energy demand in battery cell manufacturing. Procedia CIRP 2019, 80, 126–131. [Google Scholar] [CrossRef]
- Emilsson, E.; Dahllöf, L. Lithium-Ion Vehicle Battery Production Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2019. [Google Scholar]
- Cooney, G.; Hawkins, T.R.; Marriott, J. Life cycle assessment of diesel and electric public transportation buses. J. Ind. Ecol. 2013, 17, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Chester, M. Life-cycle environmental inventory of passenger transportation in the United States. Inst. Transp. Stud. 2008. [Google Scholar]
- Chester, M.; Horvath, A. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail; Institute of Transportation Studies, UC Berkeley/Institute of Transportation Studies, Research Reports, Working Papers, Proceedings: Berkeley, CA, USA, 2009. [Google Scholar]
- Renzulli, P.A.; Notarnicola, B.; Tassielli, G.; Arcese, G.; Di Capua, R. Life cycle assessment of steel produced in an Italian integrated steel mill. Sustainability 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Norgate, T.E.; Jahanshahi, S.; Rankin, W.J. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Burchart-Korol, D. Life cycle assessment of steel production in Poland: A case study. J. Clean. Prod. 2013, 54, 235–243. [Google Scholar] [CrossRef]
- Na, H.; Gao, C.; Zhang, M.; Qi, Z.; Ye, Z. Life cycle assessment analysis of the environment load from typical chinese steel enterprises. J. Environ. Account. Manag. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.-q.; Zhu, W.-s.; Huang, J.-b. Environmental impact assessment of China’s primary aluminum based on life cycle assessment. Trans. Nonferrous Met. Soc. China 2019, 29, 1784–1792. [Google Scholar] [CrossRef]
- Gloria, T.P. The Environmental Footprint of Semi-Finished Aluminum Products in North America; The Aluminum Association: Arlington, VA, USA, 2013. [Google Scholar]
- Hydro Low-Carbon, Greener Aluminium: Hydro REDUXA and Hydro CIRCAL. Available online: https://www.hydro.com/en-NO/products-and-services/low-carbon-aluminium/ (accessed on 1 February 2020).
- Ellingsen, L.A.W.; Hung, C.R.; Strømman, A.H. Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transp. Res. Part D Transp. Environ. 2017. [Google Scholar] [CrossRef]
- Romare, M.; Dahllöf, L. The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2017; ISBN 9789188319609. [Google Scholar]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 2019. [Google Scholar] [CrossRef] [Green Version]
- Held, V. LCA—The Steel Cycle. Available online: https://www.voestalpine.com/blog/en/innovation-en/lca-the-steel-cycle/ (accessed on 24 April 2020).
- Hao, H.; Mu, Z.; Jiang, S.; Liu, Z.; Zhao, F. GHG Emissions from the production of lithium-ion batteries for electric vehicles in China. Sustainability 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Dai, Q.; Wang, M. Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries. Mitig. Adapt. Strateg. Glob. Chang. 2019. [Google Scholar] [CrossRef]
- Weimer, L.; Braun, T.; Hemdt, A. vom Design of a systematic value chain for lithium-ion batteries from the raw material perspective. Resour. Policy 2019, 64, 101473. [Google Scholar] [CrossRef]
- Ellingsen, L.A.-W.; Hung, C.R. Part 2: Research for TRAN Committee—Resource and Climate Aspects of Lithium-Ion Traction Batteries and Battery Electric Vehicles; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2018; ISBN 9789284626687. [Google Scholar]
Coal | Gas | NG | Biogas | PV | Geothermal | Bio-Power | Wind | Nuclear | Hydro | |
---|---|---|---|---|---|---|---|---|---|---|
Emissions ] NREL | 980 | − | 480 | − | 44 | 40 | 40 | 11 | 12 | 7 |
Emissions [] NVE | − | 566 | − | 176 | − | − | − | 20 | − | 6 |
Region | Carbon Intensity [g CO2-eq/kWh] | Ref |
---|---|---|
Norway | 19 | [30] |
Sweden | 12 | [43] |
Denmark | 209 | [43] |
Nordic countries | 75 | As used by AtB in 2020 |
Italy | 327 | [43] |
Poland | 846 | [43] |
EU | 294 | [44] |
US-avg. | 432 | [45] |
China | 555 | [46] |
Japan | 506 | [46] |
Study | Production Location | Year | El-Mix | CI | Energy Demand | Ref |
---|---|---|---|---|---|---|
Ellingsen et al. | East Asia | 2014 | Similar to natural gas based electricity generation. | 172 | 586 | [61] |
Ellingsen et al. | East Asia | 2016 | Similar to natural gas based electricity generation. | 119 1 | 293 | [60] |
Peters et al. | − | 2017 | − | 110 | 1182 | [58] |
Romare & Dahllöf | − | 2017 | Range of renewable to non-renewable el-mix of 0.05–1 kg CO2-eq/kWh consumed | 150–200 | 350–650 | [88] |
Dai et al. | USA | 2019 | US avg. national grid mix | 72.9 | 1125 | [88] |
Emilsson & Dahllöf | 2019 | Range of renewable to non-renewable el-mix of 0.05–1 kg CO2-eq/kWh consumed | 61–106 2 | 1127 | [75] |
Bus Fleet | Diesel | Gas | Bio- Diesel | Hybrid | Electric | Total | Note |
---|---|---|---|---|---|---|---|
2018 | 3 | 213 | 94 | 10 | 0 | 320 | |
From Aug.2019 | 0 | 113 (only biogas) | 98 | 58 (Van Hool) | 36 (25 Volvo 7900 Electric and 11 Heuliez) | 305 | Nordic charging el-mix |
All-electric | 0 | 0 | 0 | 0 | 305 (only Volvo 7900 Electric) | 305 | Four charging el-mix scenarios: (1) EU-mix, (2) Nordic, (3) Norwegian (NO), (4) Norwegian without GOs (NO-GO) |
Bus Length | 12 m |
Volvo Electric battery | 200 kWh |
Heuliez Electric battery | 106 kWh |
Van Hool HEV battery | 36 kWh |
Volvo HEV Battery | 8.9 kWh |
Volvo PHEV battery | 19 kWh |
Yearly distance per bus | 60,000 km |
Lifetime | 10 years |
Battery Change Electric | 1 |
Battery Change HEV | 2 |
Battery Change PHEV | 2 |
Charging Mix | Diesel [1000 km] | HVO [1000 km] | ||||
---|---|---|---|---|---|---|
Electric | Conv. | HEV | PHEV | Conv. | HEV | PHEV |
EU mix | 55 | 86 | 114 | 188 | 846 | 671 |
Nordic | 43 | 56 | 81 | 95 | 135 | 198 |
NO | 40 | 51 | 75 | 85 | 111 | 168 |
NO-GO | 77 | 191 | 195 | 63,000 | ∞ | ∞ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lie, K.W.; Synnevåg, T.A.; Lamb, J.J.; Lien, K.M. The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway. Energies 2021, 14, 770. https://doi.org/10.3390/en14030770
Lie KW, Synnevåg TA, Lamb JJ, Lien KM. The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway. Energies. 2021; 14(3):770. https://doi.org/10.3390/en14030770
Chicago/Turabian StyleLie, Kristoffer W., Trym A. Synnevåg, Jacob J. Lamb, and Kristian M. Lien. 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway" Energies 14, no. 3: 770. https://doi.org/10.3390/en14030770
APA StyleLie, K. W., Synnevåg, T. A., Lamb, J. J., & Lien, K. M. (2021). The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway. Energies, 14(3), 770. https://doi.org/10.3390/en14030770