Perspectives of Convertors and Communication Aspects in Automated Vehicles, Part 2: Printed Antennas and Sensors for Automotive Radars
Abstract
:1. Introduction
- Safer passenger transport systems: road, rail, and water;
- Bio-signal detection for healthcare and elderly/baby monitoring;
- Security systems in airport; and urban areas;
- Civil engineering (structural-health monitoring, land-slide monitoring, and ground penetration to detect pipelines, electrical wires, etc.);
- Disseminated surveillance system (smart city, airport, bank, and school);
- Millimeter-wave body scanner to ensure safety;
- Environmental-monitoring and civil defense through anti-collision drones;
- Monitoring industrial measurements in harsh environments without interaction; and
- Groove wall target detection.
2. Antennas for Automotive Radar
2.1. Low-Profile 24-GHz Antennas and Arrays
2.2. Low-Profile 77-GHz Antennas and Arrays
3. Sensors for Automotive Radar Technology
4. Challenges and Future Scope
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gardill, M. Automotive Radar–A Signal Processing Perspective on Current Technology and Future Systems; Repositorio Institucional Universidad de Málaga: Málaga, Spain, 2018. [Google Scholar]
- Microwaves & RF, “Driving Safety with Automotive Radar Systems,” Microwave & RF. Available online: https://www.mwrf.com/technologies/systems/article/21849983/driving-safely-with-automotive-radar-systems (accessed on 9 March 2021).
- Viikari, V.V.; Varpula, T.; Kantanen, M. Road-condition recognition using 24 GHz automotive radar. IEEE Trans Intell. Transp. Syst. 2009, 10, 639–648. [Google Scholar] [CrossRef]
- Series, M. Systems characteristics of automotive radars operating in the frequency band 76–81 GHz for intelligent transport. systems applications. In Recommendation ITU-R, M.2057-1; International Telecommunication Union: Geneva, Switzerland, 2018. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bhartia, P.; Tomar, R.S.; Rao, K.V.S. Millimeter-Wave Microstrip and Printed Circuit Antennas; Artech House: Norwood, MA, USA, 1991. [Google Scholar]
- Carver, K.R.; Mink, J. Microstrip antenna technology. IRE Trans. Antennas Propag. 1981, 29, 2–24. [Google Scholar] [CrossRef]
- Xue, L.; Fusco, V. 24 GHz automotive radar planar Luneburg lens. IET Microw. Antennas Propag. 2007, 1, 624–628. [Google Scholar] [CrossRef]
- Alhalabi, R.A.; Rebeiz, G.M. High-Efficiency Angled-Dipole Antennas for Millimeter-Wave Phased Array Applications. IEEE Trans. Antennas Propag. 2008, 56, 3136–3142. [Google Scholar] [CrossRef]
- Alhalabi, R.A.; Rebeiz, G.M. High-Gain Yagi-Uda Antennas for Millimeter-Wave Switched-Beam Systems. IEEE Trans. Antennas Propag. 2009, 57, 3672–3676. [Google Scholar] [CrossRef]
- Lee, M.-S.; Kim, Y.-H. Design and Performance of a 24-GHz Switch-Antenna Array FMCW Radar System for Automotive Applications. IEEE Trans. Veh. Technol. 2010, 59, 2290–2297. [Google Scholar] [CrossRef]
- Ghaffar, F.A.; Khalid, M.U.; Salama, K.N.; Shamim, A. 24-GHz LTCC Fractal Antenna Array SoP with Integrated Fresnel Lens. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, W.; Zhang, Y.P. Microstrip Grid and Comb Array Antennas. IEEE Trans. Antennas Propag. 2011, 59, 4077–4084. [Google Scholar] [CrossRef]
- Alsath, M.G.N.; Kanagasabai, M. Ultra-wideband grid array antenna for automotive radar sensors. IET Microw. Antennas Propag. 2016, 10, 1613–1617. [Google Scholar] [CrossRef]
- He, Y.; Ma, K.; Yan, N.; Wang, Y.; Zhang, H. A Cavity-Backed End-fire Dipole Antenna Array Using Substrate-Integrated Suspended Line Technology for 24 GHz Band Applications. IEEE Trans. Antennas Propag. 2018, 66, 4678–4686. [Google Scholar] [CrossRef]
- Hamberger, G.F.; Trummer, S.; Siart, U.; Eibert, T.F. A Planar Dual-Polarized Microstrip 1-D-Beamforming Antenna Array for the 24-GHz Band. IEEE Trans. Antennas Propag. 2016, 65, 142–149. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Lin, C.-C.; Sun, J.-S. Modified Microstrip Franklin Array Antenna for Automotive Short-Range Radar Application in Blind Spot Information System. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1731–1734. [Google Scholar] [CrossRef]
- Yu, C.-A.; Li, E.S.; Jin, H.; Cao, Y.; Su, G.-R.; Che, W.; Chin, K.-S. 24 GHz Horizontally Polarized Automotive Antenna Arrays with Wide Fan Beam and High Gain. IEEE Tran. Antennas Propag. 2019, 67, 892–904. [Google Scholar] [CrossRef]
- Boyuan, M.; Pan, J.; Wang, E.; Luo, Y. Fixing and Aligning Methods for Dielectric Resonator Antennas in K Band and Beyond. IEEE Acces. 2019, 7, 12638–12646. [Google Scholar] [CrossRef]
- Ramasubramanian, K.; Ramaiah, K. Moving from legacy 24 GHz to state-of-the-art 77-GHz radar. ATZelektronik Worldw. 2018, 13, 46–49. [Google Scholar] [CrossRef]
- Menzel, W.; Pilz, D.; Al-Tikriti, M. Millimeter-wave folded reflector antennas with high gain, low loss, and low profile. IEEE Antennas Propag. Mag. 2002, 44, 24–29. [Google Scholar] [CrossRef]
- Schoebel, J.; Herrero, P. Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications. Radar Technol. 2010. [Google Scholar] [CrossRef] [Green Version]
- Hallbjorner, P.; He, Z.; Bruce, S.; Cheng, S. Low-Profile 77-GHz Lens Antenna with Array Feeder. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 205–207. [Google Scholar] [CrossRef]
- Menzel, W.; Moebius, A. Antenna Concepts for Millimeter-Wave Automotive Radar Sensors. In Proceedings of the IEEE; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; Volume 100, pp. 2372–2379. [Google Scholar]
- Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory Tech. 2012, 60, 845–860. [Google Scholar] [CrossRef]
- Wang, X.; Stelzer, A. A 79-GHz LTCC Patch Array Antenna Using a Laminated Waveguide-Based Vertical Parallel Feed. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 987–990. [Google Scholar] [CrossRef]
- Artemenko, A.; Mozharovskiy, A.; Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Ssorin, V. Experimental Characterization of E-Band Two-Dimensional Electronically Beam-Steerable Integrated Lens Antennas. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1188–1191. [Google Scholar] [CrossRef]
- Hallbjorner, P.; Cheng, S. Improvement in 77-GHz Radar Cross Section of Road Work Jacket and Side Screen by Use of Planar Flexible Retrodirective Reflectors. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1085–1088. [Google Scholar] [CrossRef]
- Yeap, S.B.; Qing, X.; Chen, Z.N. 77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications. IEEE Trans. Antennas Propag. 2015, 63, 2833–2837. [Google Scholar] [CrossRef]
- Imbert, M.; Papio, A.; De Flaviis, F.; Jofre, L.; Romeu, J. Design and Performance Evaluation of a Dielectric Flat Lens Antenna for Millimeter-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 342–345. [Google Scholar] [CrossRef] [Green Version]
- Sönmez, N.T.; Tokan, N.T. Effects of anti-reflective coatings on scanning performance of millimetre-wave lenses. IET Microw. Antennas Prop. 2016, 10, 1485–1491. [Google Scholar] [CrossRef]
- Khan, O.; Meyer, J.; Baur, K.; Waldschmidt, C. Hybrid Thin Film Antenna for Automotive Radar at 79 GHz. IEEE Trans. Antennas Propag. 2017, 65, 5076–5085. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Zhang, H.; Wang, G.; Yu, Y.; Jiang, Z.H. An Array Antenna for Both Long- and Medium-Range 77 GHz Automotive Radar Applications. IEEE Trans. Antennas Propag. 2017, 65, 7207–7216. [Google Scholar] [CrossRef]
- Chipengo, U.; Krenz, P.M.; Carpenter, S. From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Cor-ner Case Simulation. Model. Simul. Eng. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Arnieri, E.; Greco, F.; Boccia, L.; Amendola, G. A Reduced Size Planar Grid Array Antenna for Automotive Radar Sensors. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2389–2393. [Google Scholar] [CrossRef]
- Salzburg, C.G.; Vaupel, T.; Bertuch, T.; Wilhelm, M.; Wichmann, T.; Alfageme, S.T. Feasibility of an automotive radar antenna at 77 GHz on LTCC substrate. IET Radar Sonar Navig. 2018, 12, 1172–1178. [Google Scholar] [CrossRef]
- Yu, Y.; Hong, W.; Zhang, H.; Xu, J.; Jiang, Z.H. Optimization and Implementation of SIW Slot Array for Both Medium- and Long-Range 77 GHz Automotive Radar Application. IEEE Trans. Antennas Propag. 2018, 66, 3769–3774. [Google Scholar] [CrossRef]
- Tian, H.; Liu, C.; Gu, X. Proximity-coupled feed patch antenna array for 79 GHz automotive radar. J. Eng. 2019, 2019, 6244–6246. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Jiang, Z.H.; Zhang, H. Low-Profile Circular Patch Array Fed by Slotted Substrate Integrated Waveguide. IEEE Trans. Antennas Propag. 2018, 67, 960–970. [Google Scholar] [CrossRef]
- Hamberger, G.F.; Späth, S.; Siart, U.; Eibert, T.F. A Mixed Circular/Linear Dual-Polarized Phased Array Concept for Auto-motive Radar—Planar Antenna Designs and System Evaluation at 78 GHz. IEEE Trans. Antennas Propag. 2019, 67, 1562–1572. [Google Scholar] [CrossRef]
- Yoo, S.; Milyakh, Y.; Kim, H.; Hong, C.; Choo, H. Patch Array Antenna Using a Dual Coupled Feeding Structure for 79 GHz Automotive Radar Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 676–679. [Google Scholar] [CrossRef]
- Meinel, H.H.; Dickmann, J. Automotive radar: From its origins to future directions. Microw. J. 2013, 56, 24–40. [Google Scholar]
- Shinichi, H.; Uehara, N. Millimeter-wave radar technology for automotive application. Signal 2001, 1, b2. [Google Scholar]
Parameter | 24 GHz | 77 GHz | |
---|---|---|---|
Size | Higher | With wavelengths that are one third the size of 24-GHz antenna systems | |
Attenuation | With longer wavelengths, suffer more propagation loss due to rainfall and dust | With shorter wavelengths, suffer lesser propagation loss due to rainfall and dust | |
Resolution | Lower detection range with a lesser resolution | More excellent detection range with higher resolution than 24-GHz systems | |
Frequency Range | Narrow Band | Ultra-wideband | 76–81 GHz |
24–24.5 GHz | 21.5–26.5 GHz | ||
Bandwidth | 250 MHz | 5 GHz | 5 GHz |
Maximum transmit power to the antenna | 6 dBm | 10 dBm | |
Antenna gain | 14 dBi | Typical 30 dBi |
Reference | Type of Antenna | Frequency Range (GHz) | 10 dB RL Bandwidth (GHz) | Antenna Electrical Size at 24 GHz (l × b × h mm3) | Specified or Intended Application |
---|---|---|---|---|---|
[8] | Planar dielectric Luneburg lens | 21.65–26.65 | 5 | 12.2 λ (or) 15.24 cm diameter lens | Short-range automotive radar |
[9] | End-fire angled dipole antenna | 20–26 | 6 | 34.1 × 26 × 0.381 | Automotive radars and high data-rate communication systems |
Angled-Dipole with a Corrugated (Magnetic) Ground Plane Edge | 23.2–24.6 | 1.4 | |||
[10] | Two element Yagi-Uda Antennas | 22–26 | 4 | 40 × 29 × 0.381 | Millimeter-wave radars and high data-rate communication systems |
[11] | Microstrip Patch antenna | 24.05–24.25 | 0.2 | --- | |
[12] | LTCC Fractal Antenna Array SoP (Microstrip Patch antenna) | 22–25 | 1.6 | 24 × 24 × 1.6 | |
[13] | Microstrip Grid Array Antenna (Amplitude tapered) | 24.27–24.67 | 0.4 | 164 × 20 × 0.787 | Millimeter-wave and automotive radars |
Microstrip Comb Array Antenna (45° linearly polarized) | 22.6–24.9 | 2.3 | |||
[14] | Circular Grid Array Antenna | 22.5–25.25 | 2.75 | 164 × 30 × 1.6 | |
[15] | Cavity-backed end-fire dipole antenna (1 × 4 array) | 22.77–27.75 | 4.98 | 44 × 44 × 2.374 | |
[16] | Planar Dual-Polarized Microstrip antenna | 23.25–24.25 | 1 | ----- | |
[17] | Microstrip Franklin Array Antenna | 23.89–24.14 | 0.25 | 90 × 25 × 0.203 | |
[18] | Horizontally Polarized Antenna Arrays 1 × 8 | 22–26 | 4 | ----- |
Reference | Feed Technique | Substrate Material | εr | f0 (GHz) | Impedance Bandwidth (%) | Gain (dBi) | 3 dB HPBW (deg.) | Cross Polarization (dB) | Radiation Efficiency (%) | |
---|---|---|---|---|---|---|---|---|---|---|
[8] | Tapered Microstrip line | Luneburg Lens | 2.54 | 24 | 20 | 14 | 5 | −30 | 51 | |
[9] | Microstrip line | Teflon | 2.2 | 24 | 10 to 20 | 12.3 | 17 | <−15 | 93 | |
[10] | Microstrip line | Rogers RT/Duroid 5880 | 2.2 | 24 | 17.5 | 12.5 | 30 | <−16 | 90 | |
[11] | Microstrip line | Teflon | -- | 24 | 17.5 | 25 | 8 | −29 | --- | |
[12] | Microstrip line | CT707 | 6.4 | 24 | 8 | 9 | 140 (E) and 35 (H) | −29 | --- | |
[13] | Microstrip line | RT/ Duroid 5880 substrate | 2.2 | 24 | MGAA | 1.7 | 19.85 | 60 (E) and 5 (H) | <−15 | --- |
MCAA | 8.9 | 17.4 | 12 (E) and 14 (H) | <−7 | ||||||
[14] | Long Microstrip line | RO3003 | 3 | 24 | 11.4 | 12 | 11 (E) and 136 (H) | <−15 | >80 | |
[15] | A double-side substrate-integrated suspended line | FR4 for layers-1,2,4,5 and RT/Duroid 5880 for layer-3 | FR4–4.4 and Rogers-2.2 | 24 | 19.71 | 14.3 | Narrow (--) | <−20 | 91.2 | |
[16] | Microstrip line | Rogers 4350B | 3.66 | 24 | 4.2 | 14.9 | 10 | <−20 | --- | |
[17] | Microstrip line | RO4003 | 3.55 | 24 | 0.625 | >10 | 20 (E) and 80 (H) | <−20 | --- | |
[18] | Microstrip line | Rogers RO4350B | 3.38 | 23.8 | Design I | 14.5 | 12.2 | 130 (E) and 12 (H) | <−20 | --- |
23.7 | Design II | 16.9 | 11.1 | 150 (E) and 10 (H) |
Reference | Type of the Antenna | Feed Technique | Frequency Band GHz | Substrate Type | Dielectric Constant (ɛr) | Dielectric Thickness (mm) | Application |
---|---|---|---|---|---|---|---|
[21] | Folded Reflector Antennas | Circular waveguide horn | 55–64 | Roger RT/Duroid | 2.22 | 0.254 | ISM |
76–77 | 4.5 | 1.02 | Automotive Radar | ||||
[23] | Lens Antenna (2 × 2 array) | single-end microstrip line | 76.4–76.6 | Taconic Taclam Plus | 2.1 | 0.1 | Automotive Radar |
[26] | LTCC Patch Array Antenna | Laminated Waveguide-Based Vertical Parallel | 77–81 | low-temperature co-fired ceramics | 7.3 | 0.27 | Automotive Radar (SRR/MRR) |
[27] | Integrated Lens Antennas | Microstrip line | 73–94 | RO4003C | 3.5 | ---- | Automotive Radar/mm-wave radio backhaul systems |
[29] | Dual-Layer Transmit-Array | SIW | 75–78 | RO4003C | 3.38 | 0.203 | Automotive Radar |
[30] | Dielectric Flat Lens Antenna | Microstrip-feed | 57–64 | Rogers TMM6 | 6 | 7 | WPAN |
76–80 | Automotive Radar | ||||||
[32] | Hybrid Thin-Film Antenna | SIW | 76.3–82.5 | Rogers RO3003 | 3 | 0.381 | Automotive Radar |
GCPW | 76.3–85.5 | ||||||
MS | 75.7–84.8 | ||||||
[33] | Series fed patch antenna array | SIW | 75–80 | Taconic TLY-5 | 2.2 | 0.254 | |
[35] | Planar Grid Array | Microstrip line | 77–81 | Roger 3003 | 3 | 0.254 | |
[36] | Antenna on LTCC substrate | Microstrip line | 75.53–77.75 | LTCC substrate | 7.54 | 0.1 | |
[37] | Microstrip | SIW | 75.6–78.5 | Rogers 5880 | 2.2 | 0.508 | |
[38] | Microstrip Patch antenna array | Proximity Coupled Feed | 76–81.4 | Ceramic Substrate | ---- | ---- | |
[39] | Circular Shaped Patch Antenna Array (1 × 8 and 4 × 8) | Slotted SIW | 76–79.5 | Taconic TLY-5 | 2.2 | 0.481 | |
[40] | Microstrip Planar Antenna Array | Microstrip Line | 76.5–81.5 | Rogers RO3003B | 3 | 0.127 | |
[41] | Patch Antenna Array | Double Indirect Coupled Feed | 76–81 | TSMDS3 substrate | 3.12 | 0.13 |
Reference | Operating Frequency GHz | Impedance Bandwidth (%) | 10 dB RL Bandwidth (GHz) | Gain (dBi) | HPBW (Degree) E / H Plane | Cross Polarization (dB) | Radiation Efficiency (%) | |
---|---|---|---|---|---|---|---|---|
[21] | 60 | 11.66 | 7 | 34 | 3.2/3.4 | <−24 | ---- | |
76.5 | 1.3 | 1 | 35 | 2.9/3 | <−20 | |||
[23] | 77 | 5.23 | 4 | 28 | 4/4.4 | <−19 | ---- | |
[26] | 79 | 6.33 | 4 | 13 | 7 | ---- | ---- | |
[27] | 77 | 25 | 11 | 16 (small lens) 20 (large lens) | 27 (7.5 mm lens) 18 (12.5 mm lens) | <−25 | ---- | |
[29] | 77 | 3.89 | 3 | 18.5 | 15 | ---- | ---- | |
[30] | 60 | 11.66 | 7 | 15 | 21 | <−18 | 70 | |
77 | 5.18 | 4 | 18.9 | 20 | <−20 | 80 | ||
[32] | 79 | SIW | 7.8 | 6.2 | 9.2 | 12/40 | <−30 | 19.1 |
GCPW | 11.3 | 9.2 | 10.7 | 34 | ||||
MS | 11.3 | 9.1 | 12.1 | 37.2 | ||||
[33] | 77 | 6.46 | 5 | 15.9 | 4.5/12(LRR)–40(MRR) | ---- | 70 | |
[35] | 79 | 5.19 | 4 | 15 | 5 | <−22 | 96 | |
[36] | 77 | 2.89 | 2.22 | 27.6 | 17.5 | <−25 | --- | |
[37] | 77 | 3.76 | 2.9 | 21.7 | 15 (LRR)–80 (MRR) | ----- | 63.1 | |
[38] | 79 | 6.83 | 5.4 | 14.8 | ---- | ----- | ---- | |
[39] | 77 | Linear (1 × 8) | 5.5 | 2.75 | 16.992 | 53 (XOZ)/9.5 (YOZ) | <−20 | >80 |
Planar (4 × 8) | 4.37 | 3 | 20.98 | 19 (XOZ)/9.5 (YOZ) | ||||
[40] | 78 | 6.41 | 5 | 10 | ---- | <−10 | ---- | |
[41] | 77/79 | 6.32 | 5 | 11.5 | 8.1 | ---- | ---- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darimireddy, N.K.; Mohan Rao, U.; Park, C.-W.; Fofana, I.; Sujatha, M.; Verma, A.K. Perspectives of Convertors and Communication Aspects in Automated Vehicles, Part 2: Printed Antennas and Sensors for Automotive Radars. Energies 2021, 14, 1656. https://doi.org/10.3390/en14061656
Darimireddy NK, Mohan Rao U, Park C-W, Fofana I, Sujatha M, Verma AK. Perspectives of Convertors and Communication Aspects in Automated Vehicles, Part 2: Printed Antennas and Sensors for Automotive Radars. Energies. 2021; 14(6):1656. https://doi.org/10.3390/en14061656
Chicago/Turabian StyleDarimireddy, Naresh K., U. Mohan Rao, Chan-Wang Park, I. Fofana, M. Sujatha, and Anant K. Verma. 2021. "Perspectives of Convertors and Communication Aspects in Automated Vehicles, Part 2: Printed Antennas and Sensors for Automotive Radars" Energies 14, no. 6: 1656. https://doi.org/10.3390/en14061656
APA StyleDarimireddy, N. K., Mohan Rao, U., Park, C.-W., Fofana, I., Sujatha, M., & Verma, A. K. (2021). Perspectives of Convertors and Communication Aspects in Automated Vehicles, Part 2: Printed Antennas and Sensors for Automotive Radars. Energies, 14(6), 1656. https://doi.org/10.3390/en14061656