Evaluation of Inoculated Waste Biological Stabilization Degree by Olfactometric Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object Characteristics
2.2. Characteristics of Substances Added to Waste to Reduce Odor Nuisance
- Organic waste stabilizer (OWS): According to the safety data sheet, the composition of the preparation was formed: phototrophic bacteria, lactic acid bacteria mix, yeast, cane molasses, water.
- Phyto-1: pure nettle extract, microelements, minerals, acetic acid, and sugar. According to the safety data sheet, it contained nettle extract, agricultural and vegetable oils from food and animal feed production, acetic acid, molasses, microelements (magnesium (0.03%), sulphur (0.01%), organic matter (5.5%)), total nitrogen (0.31%), total phosphorus (P2O5) (0.02%), and potassium oxide (0.08%).
- Bio-1: preparation containing thermophilic bacteria, yeast, molasses, and water.
- Bio-2: universal microbiological agent based on living probiotic bacteria cultures, which includes living cultures of lactic acid bacteria, radiophilic and phototropic bacteria, yeast, ethanol, natural acetic acid, sugar cane molasses, and clean, unchlorinated water. Another variant was Bio-2 with added plasticizers (Bio-2 plast.).
- Chem-1: a preparation containing quaternary ammonium compounds.
2.3. Methodology
2.4. Financial Assessment
3. Results
- C is the content of organic compounds in the dry mass of the sample at time t, %;
- C0 is the initial content of organic compounds in the dry mass of the sample, %;
- kr is the constant of organic compound decomposition rate of the first-order model, days−1; and
- t is time, days.
4. Discussion
5. Summary and Conclusions
Funding
Conflicts of Interest
References
- Finnveden, G.; Johansson, J.; Lind, P.; Moberg, Å. Life Cycle Assessment of Energy from Solid Waste—Part 1: General Methodology and Results. J. Clean. Prod. 2005, 13, 213–229. [Google Scholar] [CrossRef]
- Fernández, Y.; Río, J.; Rodríguez-Iglesias, J.; Castrillón, E.; Marañón, L. Life cycle assessment of different municipal solid waste management options: A case study of Asturias (Spain). J. Clean. Prod. 2014, 81, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Verda, V. Exergoeconomic analysis of a Mechanical Biological Treatment plant in an Integrated Solid Waste Management system including uncertaintie. Energy 2020, 198, 117325. [Google Scholar] [CrossRef]
- Trois, C.; Griffith, M.; Brummack, J.; Mollekopf, N. Introducing mechanical biological waste treatment in South Africa: A comparative study. Waste Manag. 2007, 27, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- De Gioannis, G.; Muntoni, A.; Cappai, G.; Milia, S. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Manag. 2009, 29, 1026–1034. [Google Scholar] [CrossRef]
- Trulli, E.; Ferronato, N.; Torretta, V.; Piscitelli, M.; Masi, S.; Mancini, I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Manag. 2017, 71, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Keck, M.; Mager, K.; Weber, K.; Keller, M.; Frei, M.; Steiner, B.; Schrade, S. Odour impact from farms with animal husbandry and biogas facilities. Sci. Total Environ. 2018, 645, 1432–1443. [Google Scholar] [CrossRef] [PubMed]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Le Roux, S.; Soutrel, I.; Daumoin, M.; Benoist, J.C. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. J. Environ. Manag. 2018, 233, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Guarino, M.; Bacenetti, J. Measurements techniques and models to assess odor annoyance: A review. Environ. Int. 2019, 134, 105261. [Google Scholar] [CrossRef] [PubMed]
- Rincón Mejía, C.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le Roux, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2018, 201, 1–12. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, Z.; Zhu, S.; Lou, Z.; Zhu, N.; Feng, L. The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ. 2019, 649, 1038–1044. [Google Scholar] [CrossRef]
- Yao, X.-Z.; Ma, R.-C.; Li, H.-J.; Wang, C.; Zhang, C.; Yin, S.-S.; Wu, D.; He, X.-Y.; Wang, J.; Zhan, L.-T.; et al. Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag. 2019, 91, 128–138. [Google Scholar] [CrossRef]
- Han, Z.; Qi, F.; Li, R.; Wang, H.; Sun, D. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. Chemosphere 2020, 249, 126077. [Google Scholar] [CrossRef] [PubMed]
- Ljunggren, G.; Norberg, B.O. On the Effect and Toxicity of Dimethyl Sulfide, Dimethyl Disulfide and Methyl Mercaptan. Acta Physiol. Scand. 1943, 5, 248–255. [Google Scholar] [CrossRef]
- Steinheider, B.; Both, R.; Winneke, G. Field studies on environmental odors inducing annoyance as well as gastric and general health-related symptoms. J. Psychophysiol. 1998, 12, 64–79. [Google Scholar]
- Luginaah, I.N.; Taylor, S.M.; Elliott, S.J.; Eyles, J.D. Community reappraisal of the perceived health effects of a petroleum refinery. Soc. Sci. Med. 2002, 55, 47–61. [Google Scholar] [CrossRef]
- Sucker, K.; Both, R.; Winneke, G. Review of adverse health effects of odours in field studies. Water Sci. Technol. 2009, 59, 1281. [Google Scholar] [CrossRef] [PubMed]
- Héroux, M.; Pagé, T.; Gélinas, C.; Guy, C. Evaluating odour impacts from a landfilling and composting site: Involving citizens in the monitoring. Water Sci. Technol. 2004, 50, 131–137. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R. Development of a system for the continuous monitoring of odours from a composting plant: Focus on training, data processing and results validation methods. Sensors Actuators B Chem. 2007, 124, 336–346. [Google Scholar] [CrossRef]
- Scaglia, B.; Orzi, V.; Artola, A.; Font, X.; Davoli, E.; Sanchez, A.; Adani, F. Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol. 2011, 102, 4638–4645. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Ma, S.; Han, L.; Li, R.; Schlick, U.; Chen, P.; Huang, G. The effect of a semi-permeable membrane-covered composting system on greenhouse gas and ammonia emissions in the Tibetan Plateau. J. Clean. Prod. 2018, 204, 778–787. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yong, X.; Wu, X.; Jia, H.; Wong, J.W.; Wu, H.; Zhou, J. Odor emission and microbial community succession during biogas residue composting covered with a molecular membrane. Bioresour. Technol. 2020, 297, 122518. [Google Scholar] [CrossRef] [PubMed]
- Chastain, J.P. Evaluation of Biosafe® as an additive to reduce odor from swine manure. In Proceedings of the 2000 ASAE Annual International Meeting, Milwaukee, WI, USA, 9–12 July 2000; pp. 1–14. [Google Scholar]
- Jacobs, J.; Sauer, N.; Gilbert, E.J. An Industry Guide for the Prevention and Control of Odours at Biowaste Processing Facilities; The Composting Association: Wellingborough, UK, 2007. [Google Scholar]
- Huang, D.-L.; Zeng, G.-M.; Feng, C.-L.; Hu, S.; Jiang, X.-Y.; Tang, L.; Su, F.-F.; Zhang, Y.; Zeng, W.; Liu, H.-L. Degradation of Lead-Contaminated Lignocellulosic Waste by Phanerochaete chrysosporium and the Reduction of Lead Toxicity. Environ. Sci. Technol. 2008, 42, 4946–4951. [Google Scholar] [CrossRef] [PubMed]
- Vargas García, M.; Suárez-Estrella, F.; López, M.; Moreno, J. Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag. 2010, 30, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, M.C.; Cardelli, R.; Bedini, S.; Colombini, A.; Incrocci, L.; Castagna, A.; Agnolucci, M.; Cristani, C.; Ranieri, A.; Saviozzi, A.; et al. Microbially-enhanced composting of wet olive husks. Bioresour. Technol. 2011, 104, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Hachicha, R.; Rekik, O.; Hachicha, S.; Ferchichi, M.; Woodward, S.; Moncef, N.; Cegarra, J.; Mechichi, T. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 2012, 88, 677–682. [Google Scholar] [CrossRef]
- Voběrková, S.; Vaverková, M.D.; Burešová, A.; Adamcová, D.; Vršanská, M.; Kynický, J.; Brtnický, M.; Adam, V. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 2017, 61, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, D.; Ma, R.; Wang, G.; Li, Y.; Li, S.; Tang, H.; Zhang, B.; Li, D.; Li, G. Effects of inoculation amount and application method on the biodrying performance of municipal solid waste and the odor emissions produced. Waste Manag. 2019, 93, 91–99. [Google Scholar] [CrossRef]
- Gospodarek, M.; Rybarczyk, P.; Brillowska-Dąbrowska, A.; Gȩbicki, J. The use of various species of fungi in biofiltration of air contaminated with odorous volatile organic compounds. In E3S Web Conferences, Proceedings of the 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK, Polanica-Zdroj, Poland, 8–10 April 2019; E3S Web Conferences: Les Ulis, France, 2019; Volume 100. [Google Scholar]
- Mochalski, P.; Wzorek, B.; Śliwka, I.; Amann, A. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 189–196. [Google Scholar] [CrossRef]
- Jakubus, M.; Gajewski, P.; Kaczmarek, Z.; Mocek, A.; Wła, I.I. Impact of addition of organic additives and EM-a preparation on physical, chemical and structural state of the arable-humus soil horizon. Part II. Chemical properties. J. Res. Appl. Agric. Eng. 2013, 58, 220–225. [Google Scholar]
- Maroušek, J.; Hašková, S.; Zeman, R.; Žák, J.; Vaníčková, R.; Maroušková, A.; Váchal, J.; Myšková, K. Polemics on Ethical Aspects in the Compost Business. Sci. Eng. Ethics 2016, 22, 581–590. [Google Scholar] [CrossRef]
- Maroušek, J.; Kolář, L.; Strunecký, O.; Kopecký, M.; Bartoš, P.; Maroušková, A.; Cudlínová, E.; Konvalina, P.; Šoch, M.; Moudry, J., Jr.; et al. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J. Clean. Prod. 2020, 272, 123015. [Google Scholar] [CrossRef]
- Maroušek, J.; Rowland, Z.; Valášková, K.; Král, P. Techno-economic assessment of potato waste management in developing economies. Clean Technol. Environ. Policy 2020, 22, 937–944. [Google Scholar] [CrossRef]
- Maroušek, J.; Kwan, J.T.H. Use of pressure manifestations following the water plasma expansion for phytomass disintegration. Water Sci. Technol. 2013, 67, 1695–1700. [Google Scholar] [CrossRef]
- Lesteur, M.; Bellon-Maurel, V.; Gonzalez, C.; Latrille, E.; Roger, J.; Junqua, G.; Steyer, J. Alternative methods for determining anaerobic biodegradability: A review. Process Biochem. 2010, 45, 431–440. [Google Scholar] [CrossRef]
- Ponsá, S.; Gea, T.; Alerm, L.; Cerezo, J.; Sánchez, A. Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 2008, 28, 2735–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sri Shalini, S.; Karthikeyan, O.P.; Joseph, K. Biological stability of municipal solid waste from simulated landfills under tropical environment. Bioresour. Technol. 2010, 101, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda-Egea, F.C.; Martinez-Sabater, E.; Jordá, J.; Moral, R.; Bustamante, M.; Paredes, C.; Pérez-Murcia, M. Dissolved organic matter fractions formed during composting of winery and distillery residues: Evaluation of the process by fluorescence excitation–emission matrix. Chemosphere 2007, 68, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Barrena, R.; D’Imporzano, G.; Ponsá, S.; Gea, T.; Artola, A.; Vázquez, F.; Sánchez, A.; Adani, F. In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J. Hazard. Mater. 2009, 162, 1065–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossu, R.; Raga, R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008, 28, 381–388. [Google Scholar] [CrossRef]
- Kilian, E.; Macedowska-Capiga, A. Parametr AT4 jako wskaźnik stopnia stabilizacji odpadów po mechaniczno-biologicznym przetworzeniu. Prace Inst. Ceram. Mater. Bud. 2011, R. 4, 88–94. [Google Scholar]
- Sidełko, R.; Siebielska, I.; Szymański, K.; Skubała, A.; Kołacz, N. Ocena stabilności kompostu w czasie rzeczywistym. Inżynieria Ochr. Sr. 2014, T. 17, 221–230. [Google Scholar]
- Salati, S.; Scaglia, B.; Di Gregorio, A.; Carrera, A.; Adani, F. The use of the dynamic respiration index to predict the potential MSW-leachate impacts after short term mechanical biological treatment. Bioresour. Technol. 2013, 128, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Micale, C. What is the acceptable margin of error for the oxygen uptake method in evaluating the reactivity of organic waste? Waste Manag. 2014, 34, 1356–1361. [Google Scholar] [CrossRef]
- Bożym, M. Wykorzystywanie testów do oceny stopnia stabilizacji odpadów. Prace Inst. Ceram. Mater. Bud. 2011, R. 4, 79–88. [Google Scholar]
- Ponsá, S.; Gea, T.; Sánchez, A. The effect of storage and mechanical pretreatment on the biological stability of municipal solid wastes. Waste Manag. 2010, 30, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidełko, R.; Siebielska, I.; Janowska, B.; Skubała, A. Assessment of biological stability of organic waste processed under aerobic conditions. J. Clean. Prod. 2017, 164, 1563–1570. [Google Scholar] [CrossRef]
- Sánchez Arias, V.; Fernández, F.J.; Rodríguez, L.; Villaseñor, J. Respiration indices and stability measurements of compost through electrolytic respirometry. J. Environ. Manag. 2012, 95, S134–S138. [Google Scholar] [CrossRef]
- Kužel, S.; Peterka, J.; Štindl, P.; Plát, V. Agrochemical value of organic matter of fermenter wastes in biogas production. Plant Soil Environ. 2008, 54, 321–328. [Google Scholar]
- Kolář, L.; Maršálek, M.; Frelich, J.; Kužel, S.; Smetana, P.; Zedníková, J.; Švecová, M. Changes in methane release from organic matter passing through the digestive tract of horses. Czech J. Anim. Sci. 2009, 54, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Norbu, T.; Visvanathan, C.; Basnayake, B. Pretreatment of municipal solid waste prior to landfilling. Waste Manag. 2005, 25, 997–1003. [Google Scholar] [CrossRef]
- Sugni, M.; Calvaterra, E.; Adani, F. Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresour. Technol. 2005, 96, 1331–1337. [Google Scholar] [CrossRef]
- Shao, Z.; He, P.; Zhang, D.; Shao, L. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste. J. Hazard. Mater. 2009, 164, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Zmora-Nahum, S.; Markovitch, O.; Tarchitzky, J.; Chen, Y. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 2005, 37, 2109–2116. [Google Scholar] [CrossRef]
- Szyłak-Szydłowski, M. Comparison of two types of field olfactometers for assessing odours in laboratory and field tests. Chem. Eng. Trans. 2014, 40, 67–72. [Google Scholar]
- Szyłak-Szydłowski, M. Odour Samples Degradation during Detention in Tedlar® Bags. Water Air Soil Pollut. 2015, 226, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegenta, S.; Kałdun, B.; Białowiec, A. Dobór modelu i wyznaczanie parametrów kinetycznych aktywności oddechowej odpadów w trakcie procesu tlenowej biostabilizacji frakcji podsitowej odpadów komunalnych. Rocznik Ochrony Środowiska 2016, 18, 800–814. [Google Scholar]
- Kučić, D.; Briski, F. Emission of Gases During Composting of Solid Waste. Kem. Ind. 2017, 66, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.; Nandal, M.; Khosla, B. Microbes as vital additives for solid waste composting. Heliyon 2020, 6, e03343. [Google Scholar] [CrossRef]
- Mat Saad, N.F.; Ma’min, N.; Zain, S.; Basri, N.; Zaini, N. Composting of Mixed Yard and Food Wastes with Effective Microbes. J. Teknol. 2013, 65, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Jusoh, M.; Manaf, L.; Latiff, P. Composting of Rice straw with Effective Microorganisms (EM) and its Influence on Compost Quality. Iran. J. Environ. Health Sci. Eng. 2013, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maulini-Duran, C.; Artola, A.; Font, X.; Sánchez, A. Gaseous emissions in municipal wastes composting: Effect of the bulking agent. Bioresour. Technol. 2014, 172, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, R. The Practical Handbook of Compost Engineering; Routledge: Oxfordshire, UK, 2018. [Google Scholar]
- Aspray, T.J.; Dimambro, M.E.; Wallace, P.; Howell, G.; Frederickson, J. Static, dynamic and inoculum augmented respiration based test assessment for determining in-vessel compost stability. Waste Manag. 2015, 42, 3–9. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Min. | 1st Quartile | Mean | Median | 3rd Quartile | Max. | Standard Deviation |
---|---|---|---|---|---|---|---|---|
Bulk density | kg/m3 | 357.7 | 466.7 | 503.9 | 500.0 | 537.5 | 662.5 | 57.2 |
Moisture | % | 35.0 | 42.0 | 44.1 | 44.0 | 46.0 | 54.0 | 57.2 |
General org. substance | % d.m. | 24.6 | 33.5 | 36.6 | 36.3 | 39.5 | 48.4 | 4.3 |
<10 mm | % | 21.1 | 49.6 | 53.3 | 54.5 | 58.0 | 71.9 | 7.0 |
Food waste | 6.0 | 10.6 | 13.1 | 12.5 | 15.3 | 30.5 | 3.7 | |
Paper | 5.5 | 10.5 | 12.3 | 12.0 | 13.9 | 23.9 | 2.6 | |
Plastics | 1.8 | 3.7 | 4.6 | 4.5 | 5.3 | 8.7 | 1.2 | |
Textiles | 0.0 | 0.1 | 0.4 | 0.3 | 0.5 | 2.0 | 0.4 | |
Wood | 0.0 | 0.4 | 0.8 | 0.6 | 1.0 | 3.1 | 0.5 | |
Organic residue | 0.0 | 1.0 | 2.7 | 1.7 | 3.0 | 15.3 | 2.7 | |
Glass | 1.5 | 5.2 | 6.5 | 6.2 | 7.5 | 14.8 | 1.9 | |
Metal | 0.0 | 1.1 | 1.7 | 1.5 | 2.0 | 9.7 | 1.1 | |
Mineral residue | 0.1 | 1.9 | 3.2 | 3.0 | 4.1 | 12.7 | 1.9 | |
Others | 0.0 | 0.5 | 1.5 | 1.1 | 2.1 | 8.5 | 1.3 |
Parameter | Unit | Without Addition | OWS 0.8 l/Mg | OWS 1.2 l/Mg | OWS3 | Phyto-1 | Bio-1 | Bio-2 | Bio-2 Plast. | Chem-1 |
---|---|---|---|---|---|---|---|---|---|---|
Bulk density | kg/m3 | 496 | 508 | 550 | 417 | 517 | 467 | 558 | 512 | 496 |
Moisture | % | 32.2 | 36.5 | 58.4 | 30.0 | 45.2 | 36.1 | 44.5 | 39.0 | 31.0 |
General org. substance | % d.m. | 17.2 | 20.9 | 30.9 | 16.5 | 35.4 | 19.3 | 33.2 | 23.9 | 19.5 |
<10 mm | % | 61.7 | 57.3 | 57.2 | 60.1 | 49.8 | 50.0 | 46.8 | 55.3 | 54.4 |
Food waste | 10.4 | 9.2 | 9.6 | 7.4 | 11.0 | 11.7 | 12.7 | 13.0 | 17.3 | |
Paper | 10.2 | 14.7 | 14.4 | 7.8 | 11.2 | 17.2 | 12.8 | 13.1 | 11.0 | |
Plastics | 3.9 | 4.5 | 5.2 | 3.7 | 3.8 | 6.5 | 4.7 | 4.1 | 5.0 | |
Textiles | 0.1 | 0.5 | 0.4 | 0.3 | 0.6 | 0.2 | 0.9 | 0.2 | 0.2 | |
Wood | 1.0 | 0.7 | 0.6 | 0.6 | 2.7 | 0.5 | 3.1 | 1.1 | 0.4 | |
Organic residue | 1.9 | 1.3 | 0.8 | 10.7 | 1.6 | 3.0 | 2.6 | 1.1 | 1.0 | |
Glass | 7.4 | 6.5 | 7.0 | 5.4 | 8.7 | 5.1 | 7.1 | 5.7 | 5.4 | |
Metal | 0.7 | 1.0 | 2.2 | 0.9 | 1.7 | 1.5 | 1.6 | 2.3 | 1.7 | |
Mineral residue | 2.5 | 4.1 | 2.4 | 1.8 | 4.7 | 3.5 | 5.1 | 3.7 | 2.8 | |
Others | 0.2 | 0.2 | 0.2 | 1.3 | 4.2 | 0.8 | 2.6 | 0.4 | 0.8 |
Variant | Parameters of Reaction’s Kinetics | Correlation Coefficients | |||||
---|---|---|---|---|---|---|---|
Org. Compounds Decomposition. | Organic Carbon Decomposition | ||||||
kr, d−1 | tr0.5, d−1 | kOWO, d−1 | tOWO0.5, d−1 | Org. Subst.—Org. Carbon | Org. Subst.—Cod | Org. Carbon—Cod. | |
Without addition of substance | 0.004 | 173 | 0.004 | 180 | 0.91 | −0.65 | −0.41 |
OWS 0.8 l/Mg | 0.005 | 131 | 0.005 | 139 | 0.92 | 0.40 | 0.52 |
OWS 1.2 l/Mg | 0.001 | 485 | 0.004 | 167 | 0.80 | −0.86 | −0.61 |
OWS3 | 0.005 | 128 | 0.006 | 110 | 0.96 | −0.57 | −0.42 |
Phyto-1 | 0.006 | 108 | 0.007 | 97 | 0.99 | 0.69 | 0.68 |
Bio-1. | 0.004 | 180 | 0.001 | 607 | 0.65 | −0.97 | −0.78 |
Bio-2 | 0.001 | 693 | 0.001 | 607 | 0.99 | −0.10 | −0.12 |
Bio-2 plast. | 0.004 | 187 | 0.003 | 270 | 0.96 | 0.55 | 0.73 |
Chem-1 | −0.0004 | - | −0.0009 | - | 0.61 | 0.87 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyłak-Szydłowski, M. Evaluation of Inoculated Waste Biological Stabilization Degree by Olfactometric Methods. Energies 2021, 14, 1835. https://doi.org/10.3390/en14071835
Szyłak-Szydłowski M. Evaluation of Inoculated Waste Biological Stabilization Degree by Olfactometric Methods. Energies. 2021; 14(7):1835. https://doi.org/10.3390/en14071835
Chicago/Turabian StyleSzyłak-Szydłowski, Mirosław. 2021. "Evaluation of Inoculated Waste Biological Stabilization Degree by Olfactometric Methods" Energies 14, no. 7: 1835. https://doi.org/10.3390/en14071835
APA StyleSzyłak-Szydłowski, M. (2021). Evaluation of Inoculated Waste Biological Stabilization Degree by Olfactometric Methods. Energies, 14(7), 1835. https://doi.org/10.3390/en14071835