Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study
Abstract
:1. Introduction
2. Literature Studies—Identifying Barriers to BIM Implementation in the World
3. Method and Materials
3.1. The Ishikawa Diagram
- “fish head”—it is the result of defect and, at the same time, a problem to be solved;
- “spine”—brings together individual groups of causes,
- “bones”—indicate causes included in a given category.
3.2. Identifying Possible Causes for a Problem
4. Results and Discussion
4.1. Identyfication of Barriers to BIM Implementation in Polish Architecture, Engineering and Construction Sectors
4.2. Cause and Effect Analysis
4.3. Final Results and Discussion: The Most Important Barriers Limiting the Full Implementation of BIM Technology to the Construction Process
- Low level of knowledge about BIM technology
- Low level of awareness of the benefits of using BIM technology
- Low prices of construction documentation (projects, cost estimates)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Ha, M. Customer interactive building information modeling for apartment unit design. Autom. Constr. 2013, 35, 424–430. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S. A SWOT analysis on the implementation of Building Information Models within the Geospatial Environment. In Urban and Regional Data Management; UDMS Annual 2009, Taylor & Francis Group; CRC Press: Wageningen, The Netherlands, 2009; pp. 15–30. [Google Scholar]
- US National Institute of Building Sciences. National Building Information Modelling Standard, Version 1—Part 1: Overview, Principles, and Methodologies; Glossary; National Institute of Building Sciences: Washington, DC, USA, 2007. [Google Scholar]
- Trach, R.; Pawluk, K.; Lendo-Siwicka, M. The assessment of the effect of BIM and IPD on construction projects in Ukraine. Int. J. Constr. Manag. 2020, 1, 1562–3599. [Google Scholar] [CrossRef]
- Zima, K.; Plebankiewicz, E.; Wieczorek, D. A SWOT Analysis of the Use of BIM Technology in the Polish Construction Industry. Buildings 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook A: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors; WILEY: Hoboken, NJ, USA, 2011. [Google Scholar]
- Frequently Asked Questions about the National BIM Standard-United States™. Available online: https://www.nationalbimstandard.org/faqs (accessed on 22 September 2020).
- Eastman, C. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Jung, Y.; Joo, M. Building information modeling (BIM) framework for practical implementation. Autom. Constr. 2011, 20, 126–133. [Google Scholar] [CrossRef]
- Kim, H. Generating construction schedules through automatic data extraction using open BIM (building information modeling) technology. Autom. Constr. 2013, 35, 285–295. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, Y.; Akinci, B. Building Information modeling (BIM) application framework: The process of expanding from 3D to computable. Autom. Constr. 2014, 46, 82–93. [Google Scholar] [CrossRef]
- Demian, P.; Walters, D. The advantages of information management through building information modeling. J. Constr. Manag. Econ. 2014, 32, 1153–1165. [Google Scholar] [CrossRef]
- Konior, J.; Szóstak, M. Methodology of Planning the Course of the Cumulative Cost Curve in Construction Projects. Sustainability 2020, 12, 2347. [Google Scholar] [CrossRef] [Green Version]
- Potrč Obrecht, T.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA Integration: A Systematic Literature Review. Sustainability 2020, 12, 5534. [Google Scholar]
- Mistretta, F.; Sanna, G.; Stochino, F.; Vacca, G. Structure from motion point clouds for structural monitoring. Remote Sens. 2019, 11, 1940. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, A.; Monfet, D.; Forgues, D. Review of using Building Information Modeling for building energy modeling during the design process. J. Build. Eng. 2019, 23, 127–135. [Google Scholar] [CrossRef]
- Ramaji, E.; Memari, A.M. Review of BIM’s application in energy simulation: Tools, issues, and solutions. Autom. Constr. 2019, 97, 164–180. [Google Scholar]
- Bonomolo, M.; Di Lisi, S.; Leone, G. Building Information Modelling and Energy Simulation for Architecture Design. Appl. Sci. 2021, 11, 2252. [Google Scholar]
- Bastos Porsani, G.; Del Valle de Lersundi, K.; Sánchez-Ostiz Gutiérrez, A.; Fernández Bandera, C. Interoperability between Building Information Modelling (BIM) and Building Energy Model (BEM). Appl. Sci. 2021, 11, 2167. [Google Scholar]
- Gómez Melgar, S.; Sánchez Cordero, A.; Videras Rodríguez, M.; Andújar Márquez, J.M. Matching Energy Consumption and Photovoltaic Production in a Retrofitted Dwelling in Subtropical Climate without a Backup System. Energies 2020, 13, 6026. [Google Scholar] [CrossRef]
- Jeong, W.; Yan, W.; Lee, C.J. Thermal Performance Visualization Using Object-Oriented Physical and Building Information Modeling. Appl. Sci. 2020, 10, 5888. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751. [Google Scholar] [CrossRef] [Green Version]
- Sztubecki, J.; Mrówczyńska, M.; Bujarkiewicz, A. Proposition of determination of displacements using the TDRA 6000 laser station. E3S Web Conf. 2018, 55, 00011. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From point cloud to BIM: A modelling challenge in the Cultural Heritage field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 429–436. [Google Scholar]
- Giresini, L.; Stochino, F.; Sassu, M. Economic vs environmental isocost and isoperformance curves for the seismic and energy improvement of buildings considering Life Cycle Assessment. Eng. Struct. 2021, 233, 111923. [Google Scholar] [CrossRef]
- Akkurt, G.G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Costanzo, V.; del Pero, C.; Evola, G.; Huerto-Cardenas, H.E.; et al. Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renew. Sustain. Energy Rev. 2020, 118, 109509. [Google Scholar] [CrossRef]
- Ozturk, G.B. Identifying the advantages of BIM in structural design. Eurasian J. Civ. Eng. Archit. 2018, 2, 25–32. [Google Scholar]
- Shin, M.H.; Lee, H.K.; Kim, H.Y. Benefit–Cost Analysis of Building Information Modeling (BIM) in a Railway Site. Sustainability 2018, 10, 4303. [Google Scholar] [CrossRef] [Green Version]
- Sarvari, H.; Chan, D.W.M.; Rakhshanifar, M.; Banaitiene, N.; Banaitis, A. Evaluating the Impact of Building Information Modeling (BIM) on Mass House Building Projects. Buildings 2020, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- McAuley, B.; Hore, A.; West, R. BICP Global BIM Study—Lessons for Ireland’s BIM Programme; Construction IT Alliance (CitA) Limited: New York, NY, USA, 2017. [Google Scholar]
- Ishikawa, K. What is Total Quality Control. In The Japanese Way; Prentice Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Al-Ashmori, Y.Y.; Othman, I.; Rahmawati, Y. Bibliographic analysis of BIM Success Factors and Other BIM Literatures using Vosviewer: A Theoretical Mapping and Discussion. J. Phys. Conf. Ser. IOP Publ. 2020, 1529, 42105. [Google Scholar] [CrossRef]
- Hamma-adama, M.; Kouider, T.; Salman, H. Analysis of barriers and drivers for BIM adoption. Int. J. BIMa Eng. Sci. 2020, 3, 18–41. [Google Scholar]
- Oraee, M.; Hosseini, M.R.; Edwards, D.J.; Li, H.; Papadonikolaki, E.; Cao, D. Collaboration barriers in BIM-based construction networks: A conceptual model. Int. J. Proj. Manag. 2019, 37, 839–854. [Google Scholar] [CrossRef]
- Sardroud, J.M.; Mehdizadehtavasani, M.; Khorramabadi, A.; Ranjbardar, A. Barriers Analysis to Effective Implementation of BIM in the Construction Industry. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction; IAARC Publications: Berlin, Germany, 2018; Volume 35, pp. 1–8. [Google Scholar]
- Mohammed, A.; Hasnain, S.A.; Quadir, A. Implementation of building information modelling (BIM) practices and challenges in construction industry in Qatar. J. Eng. Res. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Wong, S.Y.; Gray, J. Barriers to implementing Building Information Modelling (BIM) in the Malaysian construction industry. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 495, p. 12002. [Google Scholar]
- Chan, D.W.; Olawumi, T.O.; Ho, A.M. Perceived benefits of and barriers to Building Information Modelling (BIM) implementation in construction: The case of Hong Kong. J. Build. Eng. 2019, 25, 100764. [Google Scholar] [CrossRef]
- Ullah, K.; Lill, I.; Witt, E. An overview of BIM adoption in the construction industry: Benefits and barriers. In Proceedings of the 10th Nordic Conference on Construction Economics and Organization, Tallinn, Estonia, 7–8 May 2019; Volume 10, p. 7250. [Google Scholar]
- Elagiry, M.; Marino, V.; Lasarte, N.; Elguezabal, P.; Messervey, T. BIM4Ren: Barriers to BIM implementation in renovation processes in the Italian market. Buildings 2019, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Olanrewaju, O.I.; Chileshe, N.; Babarinde, S.A.; Sandanayake, M. Investigating the barriers to building information modeling (BIM) implementation within the Nigerian construction industry. Eng. Constr. Archit. Manag. 2020, 27, 2931–2958. [Google Scholar] [CrossRef]
- Aitbayeva, D.; Hossain, M.A. Building Information Model (BIM) Implementation in Perspective of Kazakhstan: Opportunities and Barriers. J. Eng. Res. Rep. 2020, 14, 13–24. [Google Scholar] [CrossRef]
- Mahdi, M.M.; Mawlood, D.K. Challenges Facing the Implementation of Building Information Modeling (BIM) Techniques in Iraq. Zanco J. Pure Appl. Sci. 2020, 32, 48–57. [Google Scholar]
- Farooq, U.; Rehman, S.K.U.; Javed, M.F.; Jameel, M.; Aslam, F.; Alyousef, R. Investigating BIM Implementation Barriers and Issues in Pakistan Using ISM Approach. Appl. Sci. 2020, 10, 7250. [Google Scholar] [CrossRef]
- Wu, P.; Jin, R.; Xu, Y.; Lin, F.; Dong, Y.; Pan, Z. The analysis of barriers to BIM implementation for industrialized building construction: A China study. J. Civ. Eng. Manag. 2020, 27, 1–13. [Google Scholar] [CrossRef]
- Mignone, G.; Hosseini, M.R.; Chileshe, N.; Arashpour, M. Enhancing collaboration in BIM-based construction networks through organisational discontinuity theory: A case study of the new Royal Adelaide Hospital. Archit. Eng. Des. Manag. 2016, 12, 333–352. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Zhou, Z. Sustainability-based lifecycle management for bridge infrastructure using 6d Bim. Sustainability 2020, 12, 2436. [Google Scholar] [CrossRef] [Green Version]
- Biolek, V.; Hanak, T.; Hanak, M. Proposed interconnecting database for BIM models and construction-economic systems in the Czech Republic. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 471, p. 112079. [Google Scholar]
- Xu, X.; Mumford, T.; Zou, P.X. Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. Energy Build. 2020, 231, 110496. [Google Scholar] [CrossRef]
- Mesaros, P.; Spisakova, M.; Mandicak, T. Analysing the implementation motivations of BIM Technology in Construction Project Management. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 960, p. 042064. [Google Scholar]
- Hamidavi, T.; Abrishami, S.; Hosseini, M.R. Towards intelligent structural design of buildings: A BIM-based solution. J. Build. Eng. 2020, 32, 101685. [Google Scholar] [CrossRef]
- Czmoch, I.; Pękala, A. Traditional design versus BIM based design. Procedia Eng. 2014, 91, 210–215. [Google Scholar] [CrossRef]
- Nassery, F.A.R.I.D. BIM Technology in Preservation of Historical City Buildings. Tradit. Herit. Contemp. Image City 2014, 3, 57–64. [Google Scholar]
- Plebankiewicz, E.; Zima, K.; Skibniewski, M. Analysis of the first Polish BIM-Based cost estimation application. Procedia Eng. 2015, 123, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Bonenberg, W.; Wei, X. Green BIM in sustainable infrastructure. Procedia Manuf. 2015, 3, 1654–1659. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, M.; Juszczyk, M. Selected problems of bim-based planning of construction works–case study. Tech. Trans. 2015, 4, 71–79. [Google Scholar]
- Valinejadshoubi, M.; Bagchi, A.; Moselhi, O. Development of a BIM-based data management system for structural health monitoring with application to modular buildings: Case study. J. Comput. Civ. Eng. 2019, 33, 05019003. [Google Scholar] [CrossRef]
- Jasiński, A. Impact of BIM implementation on architectural practice. Archit. Eng. Des. Manag. 2020, 1–11, 1745–2007. [Google Scholar]
- Ratajczak, J.; Riedl, M.; Matt, D.T. BIM-based and AR application combined with location-based management system for the improvement of the construction performance. Buildings 2019, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- BIM Polish Perspective, Autodesk Report—2015. Available online: https://damassets.autodesk.net/content/dam/autodesk/www/campaigns/bim-event/BIM_raport_final.pdf (accessed on 20 September 2020).
- BIM, Collaboration, Cloud in Polish Construction, Autodesk Report—2019. Available online: https://www.autodesk.pl/campaigns/aec/bim-report-2019#form-section (accessed on 20 September 2020).
- Wong, K.C.; Woo, K.Z.; Woo, K.H. Ishikawa Diagram. In Quality Improvement in Behavioral Health; Springer: Cham, Switzerland, 2016; pp. 119–132. [Google Scholar]
- Ishikawa, K.; Loftus, J.H. Introduction to Quality Control; 3A Corporation: Tokyo, Japan, 1990. [Google Scholar]
- Doggett, A.M. Root Cause Analysis: A Framework for Tool Selection. Qual. Manag. J. 2005, 12, 4. [Google Scholar] [CrossRef]
- Aichouni, M. On the Use of the Basic Quality Tools for the Improvement of the Construction Industry: A Case Study of a Ready Mixed Concrete Production Process. Int. J. Civ. Environ. Eng. 2012, 12, 28–35. [Google Scholar]
- Alaa, A.S.; Pasławski, J.; Nowotarski, P. Quality Management to continuous improvements in process of Ready Mix Concrete production. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 518, p. 022019. [Google Scholar]
- Topchiy, D.; Bolotova, A.; Vorobev, A.; Atamanenko, A. Reprofiling of objects with monolithic reinforced concrete frame. IOP Conf. Ser. Mater. Sci. Eng. 2020, 890, 012137. [Google Scholar] [CrossRef]
- Hoła, B.; Nowobilski, T.; Szer, I.; Szer, J. Identification of factors affecting the accident rate in the construction industry. Procedia Eng. 2017, 208, 35–42. [Google Scholar] [CrossRef]
- Gündüz, M.; Nielsen, Y.; Özdemir, M. Quantification of delay factors using the relative importance index method for construction projects in Turkey. J. Manag. Eng. 2013, 29, 133–139. [Google Scholar] [CrossRef]
- Parchami Jalal, M.; Noorzai, E.; Yavari Roushan, T. Root cause analysis of the most frequent claims in the building industry through the SCoP3E Ishikawa diagram. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2019, 11, 04519004. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert scale: Explored and explained. Curr. J. Appl. Sci. Technol. 2015, 3, 96–403. [Google Scholar] [CrossRef]
- Boone, H.N.; Boone, D.A. Analyzing likert data. J. Ext. 2012, 50, 1–5. [Google Scholar]
- Czerwiński, K. Methodological aspects of evaluation of evaluation as a resultant value. In Social Communication and Values in Education. New Meanings and Situations; Maliszewski, W., Ed.; Adam Marszalek Publisher: Toruń, Poland, 2007. [Google Scholar]
- Wiśniewska, M.; Jasiak-Kujawska, A. Analysis of the causes of medical infections using a weighted Ishikawa diagram. Zarządzanie I Finans. 2012, 10, 328–343. [Google Scholar]
Country | Year of Publication | Source/Author | The 3 Most Important Barriers Identified |
---|---|---|---|
Qatar | 2019 | Mohammed, A., Hasnain, S.A.; Quadir, A [36] |
|
Malaysia | 2019 | Wong, S.Y.; Gray, J. [37] |
|
Hong Kong | 2019 | Chan, D.W.; Olawumi, T.O.; Ho, A.M. [38] |
|
Estonia | 2019 | Ullah, K.; Lill, I.; Witt, E. [39] |
|
Italy | 2019 | Elagiry, M.; Marino, V.; Lasarte, N.; Elguezabal, P.; Messervey, T. [40] |
|
Nigeria | 2020 | Olanrewaju, O.I.; Chileshe, N.; Babarinde, S.A.; Sandanayake, M. [41] |
|
Kazakhstan | 2020 | Aitbayeva, D.; Hossain, M.A. [42] |
|
Iraq | 2020 | Mahdi, M.M.; Mawlood, D.K. [43] |
|
Pakistan | 2020 | Farooq, U; Rehman, S.K.U.; Javed, M.F.; Jameel, M.; Aslam. F.; Alyousef, R.; [44] |
|
China | 2021 | Wu, P.; Jin, R.; Xu, Y.; Lin, F.; Dong, Y.; Pan, Z. [45] |
|
People | Finance | Method | Management | Machinery | Relative Weight | |
---|---|---|---|---|---|---|
People | x | 0.5 | 1 | 1 | 1 | 0.35 |
Finance | 0.5 | x | 1 | 1 | 0.5 | 0.30 |
Method | 0 | 0 | x | 0.5 | 1 | 0.15 |
Management | 0 | 0 | 0.5 | x | 1 | 0.15 |
Machinery | 0 | 0.5 | 0 | 0 | x | 0.05 |
Main Category | Symbol | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|
People | A | x | 0.5 | 0.5 | 1 | 1 | 1 |
B | 0.5 | x | 0.5 | 1 | 1 | 1 | |
C | 0.5 | 0.5 | x | 0.5 | 0.5 | 0.5 | |
D | 0 | 0 | 0.5 | x | 1 | 0.5 | |
E | 0 | 0 | 0.5 | 0 | x | 0.5 | |
F | 0 | 0 | 0.5 | 0.5 | 0.5 | x | |
Finance | G | H | I | J | |||
G | x | 0.5 | 0.5 | 0.5 | |||
H | 0.5 | x | 0.5 | 0.5 | |||
I | 0.5 | 0.5 | x | 0.5 | |||
J | 0.5 | 0.5 | 0.5 | x | |||
Method | K | L | M | N | O | ||
K | x | 1 | 1 | 1 | 0.5 | ||
L | 0 | x | 0.5 | 1 | 0 | ||
M | 0 | 0.5 | x | 0.5 | 0 | ||
N | 0 | 0 | 0.5 | x | 0 | ||
O | 0.5 | 1 | 1 | 1 | x | ||
Management | P | R | S | T | U | ||
P | x | 0.5 | 1 | 1 | 1 | ||
R | 0.5 | x | 1 | 1 | 1 | ||
S | 0 | 0 | x | 0.5 | 1 | ||
T | 0 | 0 | 0.5 | x | 0.5 | ||
U | 0 | 0 | 0 | 0.5 | x | ||
Machinery | W | X | Y | ||||
W | x | 0 | 0.5 | ||||
X | 1 | x | 1 | ||||
Y | 0.5 | 0 | x |
Main Category | Symbol | Cause | Relative Weight | Absolute Weight |
---|---|---|---|---|
People | A | low level of knowledge about BIM technology | 0.267 | 0.093 |
B | low level of awareness of the benefits of using BIM technology | 0.267 | 0.093 | |
C | reluctance to change and implement new technologies | 0.167 | 0.058 | |
D | entrepreneurs’ fear of high risk of investing in BIM | 0.133 | 0.047 | |
E | employees’ lack of willingness to improve their qualifications in the BIM standard | 0.067 | 0.023 | |
F | preferences of standard solutions among participants of a construction project | 0.100 | 0.035 | |
Finance | G | low prices of construction documentation (projects, cost estimates) | 0.250 | 0.075 |
H | high software costs | 0.250 | 0.075 | |
I | high training costs for employees | 0.250 | 0.075 | |
J | no financial support for companies (subsidies, etc.) | 0.250 | 0.075 | |
Method | K | lack of common procedures and operating standards | 0.350 | 0.053 |
L | labour intensity of project development based on BIM technology | 0.150 | 0.023 | |
M | too much detail in BIM studies, useless at the early design stage | 0.100 | 0.015 | |
N | mistakes in creating BIM projects | 0.050 | 0.008 | |
O | no legal regulations favoring BIM | 0.350 | 0.053 | |
Management | P | lack of BIM technology specialists | 0.350 | 0.053 |
R | poor cooperation between various entities and market participants | 0.350 | 0.053 | |
S | lack of employers’ acceptance of increasing remuneration costs for BIM specialists as an additional workload | 0.150 | 0.023 | |
T | insufficient commitment of senior management | 0.100 | 0.015 | |
U | reluctance of officials to change and progress | 0.050 | 0.008 | |
Machinery | W | outdated infrastructure in enterprises (computer hardware) | 0.167 | 0.008 |
X | no universal software platform | 0.667 | 0.033 | |
Y | some software only in English | 0.167 | 0.008 |
No. | Cause | Absolute Weight | Cumulative Sum | Reference Area |
---|---|---|---|---|
1 | People—low level of knowledge about BIM technology | 0.093 | 0.093 | 2.053 |
2 | People—low level of awareness of the benefits of using BIM technology | 0.093 | 0.187 | 3.920 |
3 | Finance—low prices of construction documentation (projects, cost estimates) | 0.075 | 0.262 | 5.233 |
4 | Finance—high software costs | 0.075 | 0.337 | 6.397 |
5 | Finance—high training costs for employees | 0.075 | 0.412 | 7.410 |
6 | Finance—no financial support for companies (subsidies, etc.) | 0.075 | 0.487 | 8.273 |
7 | People—reluctance to change and implement new technologies | 0.058 | 0.545 | 8.720 |
8 | Method—lack of common procedures and operating standards | 0.053 | 0.598 | 8.963 |
9 | Method—no legal regulations favouring BIM | 0.053 | 0.650 | 9.100 |
10 | Management—lack of BIM technology specialists | 0.053 | 0.703 | 9.133 |
11 | Management—poor cooperation between various entities and market participants | 0.053 | 0.755 | 9.060 |
12 | entrepreneurs’ fear of high risk of investing in BIM | 0.047 | 0.802 | 8.818 |
13 | preferences of standard solutions among participants of a construction project | 0.035 | 0.837 | 8.367 |
14 | no universal software platform | 0.033 | 0.870 | 7.830 |
15 | employees’ lack of willingness to improve their qualifications in the BIM standard | 0.023 | 0.893 | 7.147 |
16 | labor intensity of project development based on BIM technology | 0.023 | 0.916 | 6.411 |
17 | lack of employers’ acceptance of increasing remuneration costs for BIM specialists as an additional workload | 0.023 | 0.938 | 5.630 |
18 | too much detail in BIM studies, useless at the early design stage | 0.015 | 0.953 | 4.767 |
19 | insufficient commitment of senior management | 0.015 | 0.968 | 3.873 |
20 | outdated infrastructure in enterprises (computer hardware) | 0.008 | 0.977 | 2.930 |
21 | some software only in English | 0.008 | 0.985 | 1.970 |
22 | mistakes in creating BIM projects | 0.008 | 0.993 | 0.993 |
23 | reluctance of officials to change and progress | 0.008 | 1.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leśniak, A.; Górka, M.; Skrzypczak, I. Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study. Energies 2021, 14, 2090. https://doi.org/10.3390/en14082090
Leśniak A, Górka M, Skrzypczak I. Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study. Energies. 2021; 14(8):2090. https://doi.org/10.3390/en14082090
Chicago/Turabian StyleLeśniak, Agnieszka, Monika Górka, and Izabela Skrzypczak. 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study" Energies 14, no. 8: 2090. https://doi.org/10.3390/en14082090
APA StyleLeśniak, A., Górka, M., & Skrzypczak, I. (2021). Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study. Energies, 14(8), 2090. https://doi.org/10.3390/en14082090