Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China
Abstract
:1. Introduction
2. DEA Model for Hydrogen Energy Financing Efficiency Evaluation
3. Driving Factors for Hydrogen Energy Financing Efficiency Evaluation
4. Empirical Results and Analysis
4.1. Basic Data
4.2. Measurement of Financing Efficiency
4.3. Financing Benefit Analysis of Hydrogen Energy Enterprises in Different Segments
4.4. Financing Benefit Analysis of Hydrogen Energy Enterprises in Different Areas
4.5. Study on the Drivers of Financing Efficiency
4.5.1. Descriptive Statistics of Variables
4.5.2. Correlation Coefficient Test
4.5.3. Multicollinearity Test
4.5.4. Cointegration Test
4.5.5. Model Regression Results
5. Conclusions and Policy Recommendation
5.1. Improve the Hydrogen Energy Industry Policy and Optimize the Financial Support System
5.2. Improve Technological Innovation and Accelerate the Training of Enterprise Talents
5.3. Improve Financing Structure and Broaden Financing Channels
5.4. Improving Management Level and Profitability
5.5. Limitations of this Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.T.; Zhai, P.M. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Adv. Clim. Chang. Res. 2021, 12, 281–286. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Economic prospects and policy framework for hydrogen as fuel in the transport sector. Energy Policy 2018, 123, 280–288. [Google Scholar] [CrossRef]
- Zhao, F.; Mu, Z.; Hao, H.; Liu, Z.; He, X.; Victor Przesmitzki, S.; Ahmad Amer, A. Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective. Energy Technol. 2020, 8, 2000179. [Google Scholar] [CrossRef]
- Meng, X.Y.; Gu, A.; Wu, X.G.; Zhou, L.L.; Zhou, J.; Liu, B.; Mao, Z.Q. Status quo of China hydrogen strategy in the field of transportation and international comparisons. Int. J. Hydrogen Energy 2021, 46, 28887–28899. [Google Scholar] [CrossRef]
- Klimek, D.; Jedrych, E. A Model for the Sustainable Management of Enterprise Capital. Sustainability 2021, 13, 183. [Google Scholar] [CrossRef]
- Modigliani, F.; Miller, M.H. The Cost of Capital Corporation Finance and the Theory of Investment. Am. Econ. Rev. 1959, 48, 443–453. [Google Scholar]
- Modigliani, F.; Miller, M.H. Corporate Income Taxes and the Cost of Capital: A Correction. Am. Econ. Rev. 1963, 53, 433–443. [Google Scholar]
- Romano, C.A.; Tanewski, G.A.; Smyrnios, K.X. Capital structure decision making: A model for family business. J. Bus. Ventur. 2001, 16, 285–310. [Google Scholar] [CrossRef]
- Almeida, H.; Wolfenzon, D. The effect of external finance on the equilibrium allocation of capital. J. Financ. Econ. 2005, 75, 133–164. [Google Scholar] [CrossRef]
- Brown, J.R.; Fazzari, S.M.; Petersen, B.C. Financing Innovation and Growth: Cash Flow, External Equity, and the 1990s R&D Boom. J. Financ. 2010, 64, 151–185. [Google Scholar]
- Xiao, J.; Ma, Y.J. Enterprise financing efficiency and theoretical analysis framework. Financ. Econ. 2004, S1, 337–340. [Google Scholar]
- Tian, P.; Lin, B.Q. Impact of financing constraints on firm’s environmental performance: Evidence from China with survey data. J. Clean. Prod. 2019, 217, 432–439. [Google Scholar] [CrossRef]
- Guild, P.D.; Bachher, J.S. Equity investment decisions for technology based ventures. Int. J. Technol. Manag. 1996, 12, 787–795. [Google Scholar]
- Lin, B.Q.; Bin, X. How to promote the growth of new energy industry at different stages? Energy Policy 2018, 118, 390–403. [Google Scholar] [CrossRef]
- Lyu, X.H.; Shi, A.N. Research on the Renewable Energy Industry Financing Efficiency Assessment and Mode Selection. Susainability 2018, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Koengkan, M. Capital stock development and their effects on investment expansion in renewable energy in Latin America and the Caribbean region. J. Sustain. Financ. Investig. 2020, 1–18. [Google Scholar] [CrossRef]
- Fuinhas, J.A.; Koengkan, M.; Santiago, R. The role of public, private, and public-private partnership capital stock on the expansion of renewable energy investment in Latin America and the Caribbean region. Phys. Cap. Dev. Energy Transit. Lat. Am. Caribb. 2021, 137–173. [Google Scholar] [CrossRef]
- Zeng, M.; Liu, X.M.; Li, Y.L.; Peng, L.L. Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures. Renew. Sustain. Energy Rev. 2014, 31, 23–37. [Google Scholar]
- Jin, Y.; Gao, X.; Wang, M. The financing efficiency of listed energy conservation and environmental protection firms: Evidence and implications for green finance in China. Energy Policy 2021, 153, 112254. [Google Scholar] [CrossRef]
- Wiser, R.H.; Pickle, S.J. Financing investments in renewable energy: The impacts of policy design. Renew. Sustain. Energy Rev. 1998, 2, 361–386. [Google Scholar] [CrossRef]
- Bai, R.; Lin, B.Q.; Liu, X.Y. Government subsidies and firm-level renewable energy investment: New evidence from partially linear functional-coefficient models. Energy Policy 2021, 159, 112610. [Google Scholar] [CrossRef]
- Ari, I.; Koc, M. Philanthropic-crowdfunding-partnership: A proof-of-concept study for sustainable financing in low-carbon energy transitions. Energy 2021, 222, 119925. [Google Scholar] [CrossRef]
- Caneparo, L. Financing the (Environmental) Quality of Cities with Energy Efficiency Investments. Sustainability 2020, 12, 8809. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Kazemzadeh, E.; Osmani, F.; Alavijeh, N.K.; Auza, A.; Teixeira, M. Measuring the economic efficiency performance in Latin American and Caribbean countries: An empirical evidence from stochastic production frontier and data envelopment analysis. Int. Econ. 2022, 169, 43–54. [Google Scholar] [CrossRef]
- Vo, M.T. Capital structure and cost of capital when prices affect real investments. J. Econ. Bus. 2021, 113, 105944. [Google Scholar] [CrossRef]
- Livdan, D.; Nezlobin, A. Investment, capital stock, and replacement cost of assets when economic depreciation is non-geometric. J. Financ. Econ. 2021, 142, 1444–1469. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in DEA. Manag. Sci. 1984, 32, 1613–1627. [Google Scholar] [CrossRef]
- Fre, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity Changes in Swedish Pharamacies 1980–1989: A Non-Parametric Malmquist Approach; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Ray, S.; Desli, E. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment. Am. Econ. Rev. 1997, 87, 1033–1039. [Google Scholar]
- Sun, C.; Zhan, Y.; Du, G. Can value-added tax incentives of new energy industry increase firm’s profitability? Evidence from financial data of China’s listed companies. Energy Econ. 2020, 86, 104654. [Google Scholar] [CrossRef]
- Jebali, E.; Essid, H.; Khraief, N. The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach. Energy 2017, 134, 991–1000. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of Relationships for Limited Dependent Variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Mah, A.X.Y.; Ho, W.S.; Bong, C.P.C.; Hassim, M.H.; Liew, P.Y.; Asli, U.A.; Kamaruddin, M.J.; Chemmangattuvalappil, N.G. Review of hydrogen economy in Malaysia and its way forward. Int. J. Hydrogen Energy 2019, 44, 5661–5675. [Google Scholar] [CrossRef]
- Collera, A.A.; Agaton, C.B. Opportunities for production and utilization of green hydrogen in the Philippines. Int. J. Energy Econ. Policy 2021, 11, 37–41. [Google Scholar] [CrossRef]
- Srisiriwat, A.; Pirom, W. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand. IOP Conf. Ser. Mater. Sci. Eng. 2017, 241, 12041. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Ren, J.; Andreasen, K.P.; Sovacool, B.K. Viability of hydrogen pathways that enhance energy security: A comparison of China and Denmark. Int. J. Hydrogen Energy 2014, 39, 15320–15329. [Google Scholar] [CrossRef]
- Drover, W.; Busenitz, L.; Matusik, S.; Townsend, D.; Anglin, A.; Dushnitsky, G. A Review and Road Map of Entrepreneurial Equity Financing Research: Venture Capital, Corporate Venture Capital, Angel Investment, Crowdfunding, and Accelerators. J. Manag. 2017, 43, 1820–1853. [Google Scholar] [CrossRef] [Green Version]
- Sadik-Zada, E.R. Political Economy of Green Hydrogen Rollout: A Global Perspective. Sustainability 2021, 13, 13464. [Google Scholar] [CrossRef]
Indicator Type | Indicator Name | Variable | Variable Description |
---|---|---|---|
Input Index | total assets | reflects the capital scale of the enterprise | |
asset–liability ratio | reflects the capital structure and financing risk of the enterprise | ||
financing cost rate | reflects enterprise financing costs | ||
Output Index | return on equity | reflects the profitability of the enterprise | |
operating income growth rate | reflects the growth ability of the enterprise | ||
total asset turnover | reflects the operating capacity and capital utilization efficiency of the enterprise | ||
basic earnings per share | reflects the market performance of enterprise value |
Indicator Type | Indicator Name | Variable | Variable Description |
---|---|---|---|
Dependent variable | Financing efficiency | fe | The capital scale of the enterprise |
Independent variable (external factors) | Per capita GDP | gdppc | The regional economic situation where the enterprise is located |
Systemic risk | sr | Market risks that are not expected and controlled by the enterprise | |
Independent variable (internal factors) | Total assets | ta | The size of the enterprise |
Nature of the enterprise | nf | Dummy variable, 1 for existing enterprises and 0 for non-state-owned enterprises | |
Equity–liability ratio | cr | The financing structure of the enterprise | |
Shareholding ratio of the largest shareholder | sr1 | The ownership concentration of the enterprise | |
Cost–income ratio | cir | The enterprise’s cost input | |
Asset turnover | ato | The capital utilization efficiency of the enterprise | |
Return on total assets | rota | Market performance reflecting enterprise value |
Years | EC | TP | PC | SC | TFP |
---|---|---|---|---|---|
2014–2015 | 0.823 | 0.845 | 0.632 | 1.302 | 0.695 |
2015–2016 | 1.266 | 0.809 | 1.248 | 1.014 | 1.024 |
2016–2017 | 1.079 | 0.99 | 1.078 | 1.001 | 1.068 |
2017–2018 | 0.977 | 1.162 | 0.988 | 0.989 | 1.134 |
2018–2019 | 0.949 | 0.88 | 0.939 | 1.011 | 0.835 |
2019–2020 | 1.177 | 1.284 | 1.198 | 0.983 | 1.511 |
Mean | 1.034 | 0.98 | 0.99 | 1.044 | 1.014 |
Variable | Unit | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
fe | - | 490 | 0.7555 | 0.1876 | 0.2110 | 1.0000 |
gdppc | thousand yuan | 490 | 80.4275 | 32.5291 | 26.1700 | 164.8900 |
sr | - | 490 | 1.1161 | 0.7844 | −3.0289 | 8.1409 |
ta | billion yuan | 490 | 23.2591 | 86.3295 | 0.0211 | 919.0000 |
nf | - | 490 | 0.4000 | 0.4904 | 0.0000 | 1.0000 |
cr | - | 490 | 1.5767 | 1.6723 | 0.0042 | 13.8281 |
sr1 | % | 490 | 32.5689 | 17.1339 | 0.0000 | 89.9900 |
cir | % | 490 | 0.7477 | 0.1260 | 0.2873 | 1.1192 |
ato | times | 490 | 0.6431 | 0.4137 | 0.0523 | 3.5623 |
rota | % | 490 | 0.0368 | 0.0528 | −0.2416 | 0.2544 |
Items | fe | gdppc | sr | ta | nf | cr | sr1 | cir | ato | rota |
---|---|---|---|---|---|---|---|---|---|---|
fe | 1 | |||||||||
gdppc | 0.1394 *** (0.0020) | 1 | ||||||||
sr | 0.0744 (0.1000) | 0.0837 * (0.0642) | 1 | |||||||
ta | −0.1674 *** (0.0002) | 0.1609 *** (0.0003) | −0.0209 (0.6439) | 1 | ||||||
nf | −0.1369 *** (0.0024) | −0.0916 ** (0.0426) | 0.1202 ** (0.0077) | 0.216 *** (0.0000) | 1 | |||||
cr | 0.3354 *** (0.0000) | −0.0507 (0.2630) | 0.0197 (0.6641) | −0.1427 ** (0.0015) | −0.2705 *** (0.0000) | 1 | ||||
sr1 | 0.0622 (0.1690) | −0.0911 ** (0.0438) | −0.0467 (0.3019) | 0.2616 *** (0.0000) | 0.1031 ** (0.0225) | 0.0763 * (0.0915) | 1 | |||
cir | −0.2296 *** (0.0000) | 0.02 (0.6593) | 0.1074 ** (0.0174) | 0.1635 *** (0.0003) | 0.4239 *** (0.0000) | −0.4601 *** (0.0000) | 0.044 (0.3311) | 1 | ||
ato | 0.1272 *** (0.0048) | −0.0747 * (0.0984) | −0.052 (0.2506) | 0.1674 *** (0.0002) | 0.1313 *** (0.0036) | −0.1918 *** (0.0000) | 0.1303 *** (0.0039) | 0.3453 *** (0.0000) | 1 | |
rota | 0.3562 *** (0.0000) | −0.0045 (0.9212) | −0.1505 *** (0.0008) | 0.0417 (0.3569) | −0.171 *** (0.0001) | 0.2613 *** (0.0000) | 0.1309 *** (0.0037) | −0.4639 *** (0.0000) | 0.2128 *** (0.0000) | 1 |
Variable | VIF | 1/VIF |
---|---|---|
cir | 2.17 | 0.459939 |
rota | 1.66 | 0.602102 |
ato | 1.46 | 0.68292 |
cr | 1.34 | 0.747674 |
nf | 1.32 | 0.7604 |
ta | 1.21 | 0.829644 |
sr1 | 1.14 | 0.878155 |
gdppc | 1.09 | 0.91453 |
sr | 1.06 | 0.94578 |
Item | Statistic | p-Value |
---|---|---|
Modified Dickey–Fuller t (MDF) | −3.6655 | 0.0001 *** |
Dickey–Fuller t (DF) | −10.4394 | 0.0000 *** |
Augmented Dickey–Fuller t (ADF) | −1.9397 | 0.0262 ** |
Item | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
gdppc | 0.0150 *** (0.000) | 0.0148 *** (0.000) | 0.0149 *** (0.000) | 0.0149 *** (0.000) |
sr | 0.0235 ** (0.012) | 0.0239 ** (0.010) | 0.0234 ** (0.011) | 0.0232 ** (0.012) |
ta | −0.0000 *** (0.000) | −0.0000 *** (0.000) | −0.0000 *** (0.000) | −0.0000 *** (0.000) |
nf | 0.0082 (0.684) | - | - | - |
cr | 0.0292 *** (0.000) | 0.0290 *** (0.000) | 0.0299 *** (0.000) | 0.0306 *** (0.000) |
sr1 | 0.0007 (0.184) | 0.0007 (0.177) | 0.0007 (0.193) | - |
cir | −0.0663 (0.488) | −0.0549 (0.548) | - | - |
ato | 0.0889 *** (0.000) | 0.0884 *** (0.000) | 0.0823 *** (0.000) | 0.0847 *** (0.000) |
rota | 0.8209 *** (0.000) | 0.8252 *** (0.000) | 0.8849 *** (0.000) | 0.8931 *** (0.000) |
_cons | 0.5198 *** (0.000) | 0.5065 *** (0.000) | 0.4662 *** (0.000) | 0.4853 *** (0.000) |
Prob | 0.015 | 0.015 | 0.012 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Xiao, M.; Pang, Y.; Yang, M.; Zheng, Y. Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China. Energies 2022, 15, 281. https://doi.org/10.3390/en15010281
Chi Y, Xiao M, Pang Y, Yang M, Zheng Y. Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China. Energies. 2022; 15(1):281. https://doi.org/10.3390/en15010281
Chicago/Turabian StyleChi, Yuanying, Meng Xiao, Yuexia Pang, Menghan Yang, and Yuhao Zheng. 2022. "Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China" Energies 15, no. 1: 281. https://doi.org/10.3390/en15010281
APA StyleChi, Y., Xiao, M., Pang, Y., Yang, M., & Zheng, Y. (2022). Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China. Energies, 15(1), 281. https://doi.org/10.3390/en15010281