Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. A Pyrolytic Test in a TG/FT-IR Analyzer
2.3. A Test Conducted in a PyrolyticOven
2.4. Microwave-Assisted Extraction
2.5. Spectroscopic Investigations of Pyrolysis Products
2.6. XRD and SEM Investigations
3. Results and Discussion
3.1. An Analysis of the TG and DTG Curves of Loose and Densified Samples
3.2. The Influence of Densification on the Composition of Volatile Products of Pyrolysis
3.3. The Influence of Densification on Structural-Chemical Parameters of Liquid Products of Pyrolysis
3.4. The Influence of Densification on Changes in Structure Texture of Chars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A Review of Densified Solid Biomass for Energy Production. Renew. Sust. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Yan, S.; Tian, L.; Wang, H.; Liu, H.; Wang, H.; Hu, J. Effects of Temperature and Low-Concentration Oxygen on Pine Wood Sawdust Briquettes Pyrolysis: Gas Yields and Biochar Briquettes Physical Properties. Fuel Process. Technol. 2018, 177, 228–236. [Google Scholar] [CrossRef]
- Albashabsheh, N.T.; Heier Stamm, J.L. Optimization of Lignocellulosic Biomass-to-Biofuel Supply Chains with Densification: Literature Review. Biomass Bioenergy 2021, 144, 105888. [Google Scholar] [CrossRef]
- Halim, S.A.; Swithenbank, J. Characterisation of Malaysian Wood Pellets and Rubberwood Using Slow Pyrolysis and Microwave Technology. J. Anal. Appl. Pyrolysis 2016, 122, 64–75. [Google Scholar] [CrossRef]
- Yang, Z.; Sarkar, M.; Kumar, A.; Tumuluru, J.S.; Huhnke, R.L. Effects of Torrefaction and Densification on Switchgrass Pyrolysis Products. Bioresour. Technol. 2014, 174, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Florentino-Madiedo, L.; Díaz-Faes, E.; García, R.; Barriocanal, C. Influence of Binder Type on Greenhouse Gases and PAHs from the Pyrolysis of Biomass Briquettes. Fuel Process. Technol. 2018, 171, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Muazu, R.I.; Stegemann, J.A. Biosolids and Microalgae as Alternative Binders for Biomass Fuel Briquetting. Fuel 2017, 194, 339–347. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, W.; Fan, J.; Kan, T.; Zhang, W.; Liu, H.; Cheng, W.; Yang, H.; Wu, X.; Chen, H. Effect of Sodium Carboxymethyl Cellulose Addition on Particulate Matter Emissions during Biomass Pellet Combustion. Appl. Energy 2018, 230, 925–934. [Google Scholar] [CrossRef]
- Si, Y.; Hu, J.; Wang, X.; Yang, H.; Chen, Y.; Shao, J.; Chen, H. Effect of Carboxymethyl Cellulose Binder on the Quality of Biomass Pellets. Energy Fuels 2016, 30, 5799–5808. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Mani, S. Torrefaction after Pelletization (TAP): Analysis of Torrefied Pellet Quality and Co-Products. Biomass Bioenergy 2018, 118, 93–104. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, S.; Wang, C.; Mu, C.; Huang, X. High-Strength Charcoal Briquette Preparation from Hydrothermal Pretreated Biomass Wastes. Fuel Process. Technol. 2018, 171, 293–300. [Google Scholar] [CrossRef]
- Araújo, S.; Vilas Boas, M.A.; Neiva, D.M.; de Cassia Carneiro, A.; Vital, B.; Breguez, M.; Pereira, H. Effect of a Mild Torrefaction for Production of Eucalypt Wood Briquettes under Different Compression Pressures. Biomass Bioenergy 2016, 90, 181–186. [Google Scholar] [CrossRef]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and Utilization of Fuel Pellets from Biomass: A Review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Amarasekara, A.; Tanzim, F.S.; Asmatulu, E. Briquetting and Carbonization of Naturally Grown Algae Biomass for Low-Cost Fuel and Activated Carbon Production. Fuel 2017, 208, 612–617. [Google Scholar] [CrossRef]
- Zvicevičius, E.; Raila, A.; Čiplienė, A.; Černiauskienė, Ž.; Kadžiulienė, Ž.; Tilvikienė, V. Effects of Moisture and Pressure on Densification Process of Raw Material from Artemisia dubia. Wall. Renew. Energy 2018, 119, 185–192. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Yanik, J. Influences of Feedstock Type and Process Variables on Hydrochar Properties. Bioresour. Technol. 2018, 250, 337–344. [Google Scholar]
- Wang, Y.; Wu, K.; Sun, Y. Pelletizing Properties of Wheat Straw Blending with Rice Straw. Energy Fuels 2017, 31, 5126–5134. [Google Scholar] [CrossRef]
- Gendek, A.; Aniszewska, M.; Malaťák, J.; Velebil, J. Evaluation of Selected Physical and Mechanical Properties of Briquettes Produced from Cones of Three Coniferous Tree Species. Biomass Bioenergy 2018, 117, 173–179. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Salam, P.A. Characterization of Cold Densified Rice Straw Briquettes and the Potential Use of Sawdust as Binder. Fuel Process. Technol. 2017, 158, 9–19. [Google Scholar] [CrossRef]
- Gilvari, H.; de Jong, W.; Schott, D.L. Quality Parameters Relevant for Densification of Bio-Materials: Measuring Methods and Affecting Factors—A Review. Biomass Bioenergy 2019, 120, 117–134. [Google Scholar] [CrossRef]
- Jiang, L.; Liang, J.; Yuan, X.; Li, H.; Li, C.; Xiao, Z.; Huang, H.; Wang, H.; Zeng, G. Co-pelletization of Sewage Sludge and Biomass: The Density and Hardness of Pellet. Bioresour. Technol. 2014, 166, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Yank, A.; Ngadi, M.; Kok, R. Physical Properties of Rice Husk and Bran Briquettes under Low Pressure Densification for Rural Applications. Biomass Bioenergy 2016, 84, 22–30. [Google Scholar] [CrossRef]
- Riva, L.; Nielsen, H.K.; Skreiberg, Ø.; Wang, L.; Bartocci, P.; Barbanera, M.; Bidini, G.; Fantozzi, F. Analysis of Optimal Temperature, Pressure and Binder Quantity for the Production of Biocarbon Pellet to Be Used as a Substitute for Coke. Appl. Energy 2019, 256, 113933. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Zhang, Q.; Wang, F.; Wang, T.; Chang, X.; Lei, Y.; Xu, H.; Cao, J.; et al. Effects of Biomass Briquetting and Carbonization on PM2.5 Emission from Residential Burning in Guanzhong Plain, China. Fuel 2019, 244, 379–387. [Google Scholar] [CrossRef]
- Gao, A.; Wang, Y.; Lin, G.; Li, B.; Hu, X.; Huang, Y.; Zhang, S.; Zhang, H. Volatile-Char Interactions during Biomass Pyrolysis: Reactor Design toward Product Control. Renew. Energy 2022, 185, 1–7. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Hu, X.; Hu, S.; Xiang, J.; Zhang, L.; Zhang, S.; Min, Z.; Li, C.Z. Effects of Volatile–Char Interactions on in Situ Destruction of Nascent Tar during the Pyrolysis and Gasification of Biomass. Part I. Roles of Nascent Char. Fuel 2014, 122, 60–66. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, S.; Akhtar, M.A.; Li, B.; Zhou, J.; Zhang, S.; Zhang, H. Volatile–Char Interactions during Biomass Pyrolysis: Understanding the Potential Origin of Char Activity. Bioresour. Technol. 2020, 316, 123938. [Google Scholar] [CrossRef]
- Ding, K.; Wang, Y.; Liu, S.; Lin, G.; Syed-Hassan, S.S.A.; Li, B.; Hu, X.; Huang, Y.; Zhang, S.; Zhang, H. Volatile-Char Interactions during Biomass Pyrolysis: Insight into the Activity of Chars Derived from Three Major Components. J. Anal. Appl. Pyrolysis 2021, 159, 105320. [Google Scholar] [CrossRef]
- Guan, G.; Kaewpanha, M.; Hao, X.; Wang, Z.; Cheng, Y.; Kasai, Y.; Abudula, A. Promoting Effect of Potassium Addition to Calcined Scallop Shell Supported Catalysts for the Decomposition of Tar Derived from Different Biomass Resources. Fuel 2013, 109, 241–247. [Google Scholar] [CrossRef]
- Hosoya, T.; Kawamoto, H.; Saka, S. Solid/Liquid- and Vapor-Phase Interactions between Cellulose- and Lignin-Derived Pyrolysis Products. J. Anal. Appl. Pyrolysis 2009, 85, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fang, Y.; Yang, H.; Xin, S.; Zhang, X.; Wang, X.; Chen, H. Effect of Volatiles Interaction during Pyrolysis of Cellulose, Hemicellulose, and Lignin at Different Temperatures. Fuel 2019, 248, 1–7. [Google Scholar] [CrossRef]
- Penzik, M.V.; Kozlov, A.N.; Zhang, S.; Badenko, V.V.; Sosnovsky, I.K.; Shamansky, V.A. A Segmental Analysis of Pyrolysis of Woody Biomass. Thermochim. Acta 2022, 711, 179209. [Google Scholar] [CrossRef]
- Osman, A.I.; Young, T.J.; Farrell, C.; Harrison, J.; Al-Muhtaseb, A.H.; Rooney, D.W. Physicochemical Characterization and Kinetic Modeling Concerning Combustion of Waste Berry Pomace. ACS Sustain. Chem. Eng. 2020, 8, 17573–17586. [Google Scholar] [CrossRef]
- Ojha, D.K.; Kumar, V.S.P.; Vinu, R. Analytical Pyrolysis of Bagasse and Groundnut Shell Briquettes: Kinetics and Pyrolysate Composition Studies. Bioresour. Technol. Rep. 2021, 15, 100784. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into Biomass Pyrolysis Mechanism Based on Cellulose, Hemicellulose, and Lignin: Evolution of Volatiles and Kinetics, Elucidation of Reaction Pathways, and Characterization of Gas, Biochar and Bio-Oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Osman, A.I. Mass Spectrometry Study of Lignocellulosic Biomass Combustion and Pyrolysis with NOx Removal. Renew. Energ. 2020, 146, 484–496. [Google Scholar] [CrossRef]
- Feng, D.; Guo, D.; Shang, Q.; Zhao, Y.; Zhang, L.; Guo, X.; Cheng, J.; Chang, G.; Guo, Q.; Sun, S. Mechanism of Biochar-Gas-Tar-Soot Formation during Pyrolysis of Different Biomass Feedstocks: Effect of Inherent Metal Species. Fuel 2021, 293, 120409. [Google Scholar] [CrossRef]
- Couhert, C.; Commandre, J.M.; Salvador, S. Is It Possible to Predict Gas Yields of Any Biomass after Rapid Pyrolysis at High Temperature from Its Composition in Cellulose, Hemicellulose and Lignin? Fuel 2009, 88, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Giudicianni, P.; Cardone, G.; Sorrentino, G.; Ragucci, R. Hemicellulose, Cellulose and Lignin Interactions on Arundo Donax Steam Assisted Pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 138–146. [Google Scholar] [CrossRef]
- Zevenhoven-Onderwater, M.; Backman, R.; Skrifvars, B.J.; Hupa, M. The Ash Chemistry in Fluidised Bed Gasification of Biomass Fuels. Part I: Predicting the Chemistry of Melting Ashes and Ash–Bed Material Interaction. Fuel 2001, 80, 1489–1502. [Google Scholar] [CrossRef]
- Eom, I.Y.; Kim, J.Y.; Kim, T.S.; Lee, S.M.; Choi, D.; Choi, I.G.; Choi, J.W. Effect of Essential Inorganic Metals on Primary Thermal Degradation of Lignocellulosic Biomass. Bioresour. Technol. 2012, 104, 687–694. [Google Scholar] [CrossRef]
- Khelfa, A.; Bensakhria, A.; Weber, J.V. Investigations into the Pyrolytic Behaviour of Birch Wood and Its Main Components: Primary Degradation Mechanisms, Additivity and Metallic Salt Effects. J. Anal. Appl. Pyrolysis 2013, 101, 111–121. [Google Scholar] [CrossRef]
- Zhao, D.; Dai, Y.; Chen, K.; Sun, Y.; Yang, F.; Chen, K. Effect of Potassium Inorganic and Organic Salts on the Pyrolysis Kinetics of Cigarette Paper. J. Anal. Appl. Pyrolysis 2013, 102, 114–123. [Google Scholar] [CrossRef]
- Fan, H.; Gu, J.; Wang, Y.; Yuan, H.; Chen, Y.; Luo, B. Effect of Potassium on the Pyrolysis of Biomass Components: Pyrolysis Behaviors, Product Distribution and Kinetic Characteristics. Waste Manag. 2021, 121, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yi, B.; Hu, H.; Fan, Q.; Wang, H.; Yao, H. The Effects of Char and Potassium on the Fast Pyrolysis Behaviors of Biomass in an Infrared-Heating Condition. Energy 2021, 214, 119065. [Google Scholar] [CrossRef]
- Lu, Q.; Yuan, S.; Liu, C.; Zhang, T.; Xie, X.; Deng, X.; He, R. A Fe-Ca/SiO2 Catalyst for Efficient Production of Light Aromatics from Catalytic Pyrolysis of Biomass. Fuel 2020, 279, 118500. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, S.; Yuan, R.; Wang, P. Biomass Pyrolysis with Alkaline-Earth-Metal Additive for Co-Production of Bio-Oil and Biochar-Based Soil Amendment. Sci. Total Environ. 2020, 743, 140760. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Kumar, A.; Tumuluru, J.S.; Patil, K.N.; Bellmer, D.D. Gasification Performance of Switchgrass Pretreated with Torrefaction and Densification. Appl. Energy 2014, 127, 194–201. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Y.; Wang, Y.; Li, X.; Li, T.; Guo, C. Pyrolysis Kinetics and Behavior of Potassium-Impregnated Pine Wood in TGA and a Fixed-Bed Reactor. Energy Convers. Manag. 2016, 130, 184–191. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Li, S.; Wang, X.; Lin, R. Comparative Study on the Two-Step Pyrolysis of Different Lignocellulosic Biomass: Effects of Components. J. Anal. Appl. Pyrolysis 2020, 152, 104966. [Google Scholar] [CrossRef]
- Zubkova, V.; Strojwas, A.; Bielecki, M.; Kieush, L.; Koverya, A. Comparative Study of Pyrolytic Behavior of the Biomass Wastes Originating in the Ukraine and Potential Application of Such Biomass. Part 1. Analysis of the Course of Pyrolysis Process and the Composition of Formed Products. Fuel 2019, 254, 115688. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Zong, P.; Jiang, Y.; Tian, Y.; Li, J.; Yuan, M.; Ji, Y.; Chen, M.; Li, D.; Qiao, Y. Pyrolysis Behavior and Product Distributions of Biomass Six Group Components: Starch, Cellulose, Hemicellulose, Lignin, Protein and Oil. Energy Convers. Manag. 2020, 216, 112777. [Google Scholar] [CrossRef]
- Gong, C.; Thomsen, S.T.; Meng, X.; Pu, Y.; Puig-Arnavat, M.; Bryant, N.; Bhagia, S.; Felby, C.; Ragauskas, A.J.; Thygesen, L.G. Effects of Different Pelleting Technologies and Parameters on Pretreatment and Enzymatic Saccharification of Lignocellulosic Biomass. Renew. Energy 2021, 179, 2147–2157. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, S.; Huang, X.; Liu, H.; Sun, M.; Lyu, J. Correlations between the Compressive Strength of the Hydrochar Pellets and the Chemical Components: Evolution and Densification Mechanism. J. Anal. Appl. Pyrolysis 2020, 152, 104956. [Google Scholar] [CrossRef]
- Kawamoto, H.; Watanabe, T.; Saka, S. Strong Interactions during Lignin Pyrolysis in Wood—A Study by in Situ Probing of the Radical Chain Reactions Using Model Dimers. J. Anal. Appl. Pyrolysis 2015, 113, 630–637. [Google Scholar] [CrossRef]
- Gargiulo, V.; Giudicianni, P.; Alfè, M.; Ragucci, R. Influence of Possible Interactions between Biomass Organic Components and Alkali Metal Ions on Steam Assisted Pyrolysis: A Case Study On Arundo donax. J. Anal. Appl. Pyrolysis 2015, 112, 244–252. [Google Scholar] [CrossRef]
- Fushimi, C.; Katayama, S.; Tsutsumi, A. Elucidation of Interaction among Cellulose, Lignin and Xylan during Tar and Gas Evolution in Steam Gasification. J. Anal. Appl. Pyrolysis 2009, 86, 82–89. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Hu, J.; Zhang, H.; Xiao, R. Cellulose-Lignin Interactions during Fast Pyrolysis with Different Temperatures and Mixing Methods. Biomass Bioenergy 2016, 90, 209–217. [Google Scholar] [CrossRef]
- Kawamoto, H.; Morisaki, H.; Saka, S. Secondary Decomposition of Levoglucosan in Pyrolytic Production from Cellulosic Biomass. J. Anal. Appl. Pyrolysis 2009, 85, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Li, K.; Xiao, H.; Cai, N.; Dong, Z.; Chen, X.; Chen, Y.; Yang, H.; Tu, X.; Chen, H. Pyrolysis of Chinese Chestnut Shells: Effects of Temperature and Fe Presence on Product Composition. Bioresour. Technol. 2019, 287, 121444. [Google Scholar] [CrossRef] [PubMed]
- Usino, D.O.; Ylitervo, P.; Moreno, A.; Sipponen, M.H.; Richards, T. Primary Interactions of Biomass Components during Fast Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 159, 105297. [Google Scholar] [CrossRef]
- Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of Hydrothermally Treated Wood in Relation to Changes on Its Chemical Composition and Physical Properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Cortizas, A.M. Application of FTIR Spectroscopy to the Characterization of Archeological Wood. Spectrochim. Acta A 2016, 153, 63–70. [Google Scholar] [CrossRef]
- Zubkova, V.; Strojwas, A.; Bielecki, M. Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves. Energies 2021, 14, 2091. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Ali, M.F.; Shirokoff, J. Use of X-ray Diffraction in Assessing the Aging Pattern of Asphalt Fractions. Fuel 2002, 81, 51–58. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Hauser, A.; Rana, M.S.; Lababidi, H.M.S.; Behbehani, M. Changes in Asphaltene Structure during Thermal Cracking of Residual Oils: XRD Study. Fuel 2015, 150, 558–564. [Google Scholar] [CrossRef]
- He, P.; Liu, Y.; Shao, L.; Zhang, H.; Lü, F. Particle Size Dependence of the Physicochemical Properties of Biochar. Chemosphere 2018, 212, 385–392. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Zhang, J.; Barati, M.; Liu, Z.; Xu, T.; Yang, T.; Sahajwalla, V. Comprehensive Investigation of Various Structural Features of Bituminous Coals Using Advanced Analytical Techniques. Energy Fuels 2015, 29, 7178–7189. [Google Scholar] [CrossRef]
- Tsaneva, V.N.; Kwapinski, W.; Teng, X.; Glowacki, B.A. Assessment of the Structural Evolution of Carbons from Microwave Plasma Natural Gas Reforming and Biomass Pyrolysis Using Raman Spectroscopy. Carbon 2014, 80, 617–628. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Wang, J. Pyrolytic Characteristics of Pine Wood in a Slowly Heating and Gas Sweeping Fixed-Bed Reactor. J. Anal. Appl. Pyrolysis 2009, 84, 179–184. [Google Scholar] [CrossRef]
- Azargohar, R.; Nanda, S.; Kozinski, J.A.; Dalai, A.K.; Sutarto, R. Effects of Temperature on the Physicochemical Characteristics of Fast Pyrolysis Bio-Chars Derived from Canadian Waste Biomass. Fuel 2014, 125, 90–100. [Google Scholar] [CrossRef]
- Hwang, H.; Oh, S.; Cho, T.S.; Choi, I.G.; Choi, J.W. Fast Pyrolysis of Potassium Impregnated Poplar Wood and Characterization of Its Influence on the Formation as Well as Properties of Pyrolytic Products. Bioresour. Technol. 2013, 150, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Jiang, B.; Liu, J.; Sun, Y.; Jiang, X. Influence of Interactions between Biomass Components on Physicochemical Characteristics of Char. J. Anal. Appl. Pyrolysis 2019, 144, 104704. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, L.; Wang, Y.; Su, S.; Sun, L.; Xu, B.; He, L.; Xiang, J. Effects of Inherent Alkali and Alkaline Earth Metallic Species on Biomass Pyrolysis at Different Temperatures. Bioresour. Technol. 2015, 192, 23–30. [Google Scholar] [CrossRef]
Main Characteristics | WS | SW | SH |
---|---|---|---|
C [%] | 39.90 ± 0.15 | 45.34 ± 0.13 | 45.82 ± 0.08 |
H [%] | 5.75 ± 0.02 | 5.86 ± 0.04 | 6.32 ± 0.02 |
N [%] | 0.65 ± 0.08 | 0.58 ± 0.11 | 2.61 ± 0.05 |
S [%] | 0.13 ± 0.05 | 0.17 ± 0.07 | 0.14 ± 0.02 |
O a [%] | 41.97 ± 0.07 | 42.45 ± 0.04 | 38.31 ± 0.08 |
A d [%] | 11.59 ± 0.76 | 5.60 ± 0.38 | 6.81 ± 0.51 |
HHV b [MJ·kg−1] | 16.12 ± 0.19 | 18.23 ± 0.13 | 19.31 ± 0.13 |
Elements | WS | SW | SH |
---|---|---|---|
Al | <0.01 | 0.20 ± 0.05 | 0.08 ± 0.05 |
P | 0.04 ± 0.02 | 0.07 ± 0.01 | 0.36 ± 0.02 |
S | 0.19 ± 0.01 | 0.08 ± 0.01 | 0.33 ± 0.02 |
Cl | 0.46 ± 0.01 | 0.03 ± 0.01 | 0.10 ± 0.01 |
K | 1.30 ± 0.04 | 0.36 ± 0.02 | 1.30 ± 0.04 |
Ca | 0.54 ± 0.04 | 1.32 ± 0.06 | 0.76 ± 0.05 |
Fe | 0.10 ± 0.01 | 0.37 ± 0.01 | 0.14 ± 0.01 |
Si | 2.58 ± 0.05 | 0.71 ± 0.03 | 0.70 ± 0.05 |
Zn | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecki, M.; Zubkova, V.; Strojwas, A. Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products. Energies 2022, 15, 4257. https://doi.org/10.3390/en15124257
Bielecki M, Zubkova V, Strojwas A. Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products. Energies. 2022; 15(12):4257. https://doi.org/10.3390/en15124257
Chicago/Turabian StyleBielecki, Marcin, Valentina Zubkova, and Andrzej Strojwas. 2022. "Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products" Energies 15, no. 12: 4257. https://doi.org/10.3390/en15124257
APA StyleBielecki, M., Zubkova, V., & Strojwas, A. (2022). Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products. Energies, 15(12), 4257. https://doi.org/10.3390/en15124257