Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System
Abstract
:1. Introduction
2. Materials and Methods
- Pz—grain yield,
- Is/z—ratio of straw yield to grain yield,
- Is/a—ratio of straw yield to land area,
- Ins—indicator of grain surplus,
- A—land area dedicated to grain production,
- Zs—straw surplus,
- Es—volume of energy generation.
- -
- A single-criterion method for minimizing the distance of biomass transportation from agricultural areas to the designated study area (eight communes + a single existing heating system), this study will not offer the possibility of the simultaneous determination of locations for more than one logistic facility. The method is simplified and additionally, an analytical-descriptive method should be used to assess the location,
- -
- A multi-criteria analytical-descriptive method that compares design alternatives by the application of the simplest analytical methods. This enables the included location factors to be reduced to one criterion and the selection of the best location for biomass storage prior to its transport to the selected heating system.
- -
- heuristic ones, that is ones that already account for the quality of a solution;
- -
- single- as well as multi-criteria ones (derived from stage four of this analysis);
- -
- multi-object ones, which take into account the possibility of simultaneous location of several warehouses and building a hierarchy in the logistics network of supply;
- -
- analytical and descriptive ones.
3. Results
3.1. New Opportunities for the Biomass Market in System Heating in Poland—First Stage
Determinants for Development of Biomass Market in Poland
3.2. Biomass Potential in POLAND—Stage Two
Investigation of the Biomass Potential on the Selected Example of Opolskie Voivodeship
3.3. Characteristic of Selected Area of Investigations—Stage Three
3.4. Multivariate Analysis of Looking for the Optimal Location for Biomass Delivery—Stage Four
3.4.1. Single-Criterion Method of Minimizing the Road Distance
3.4.2. Multi-Criteria Method of Minimizing Road Distances
- -
- L[3–7 GWh/a] = [(OZ, SZCZ; 5), (OZ, Z; 17), (OZ, SW; 15), (OZ, DK; 8), (R, Z; 5), (LCZ, O; 4), (LD, DA; 7), (DK, DE; 4), (DE, DA; 6) = 71 km;
- -
- L[11 GWh/a] = [(SZM, LD; 4), (OZ, LD;18), (RZ, LD; 5)] = 27 km
- -
- L[15 GWh/a] = [(OZ, LT; 13), (OZ, KM; 14)] = 27 km
- -
- L[34 GWh/a] = [(OZ, RO; 19), (RO, SZY; 8), (RO, BS; 13)] = 40 km
3.5. Optimization of Supply Chain of Biomass in the Selected Region in Poland—Stage Five
4. Discussion
5. Conclusions
- Analysis of the technologies and fuels that are applied in the heating systems,
- Calculation of the biomass potential in all the voivodeships in Poland using data from the last five years (data from the Central Statistical Office and ARiMR) by the application of the Delphi Method for the selected research area,
- Analysis of the characteristics of the studied area (including: natural and climatic, heating systems, arable land surfaces, and arable lands),
- Multivariate analysis that was applied in search for the optimal location for biomass delivery. The Prima algorithm was utilized to calculate the MST. MST was applied by the application of single-criteria methods and multi-criteria in decision-making processes. The Prima algorithm serves for establishing the shortest routes to connect the selected locations in the investigated area. On the basis of these results, we can conclude that the proposed concept of the biomass transportation model within the selected area can be developed with further analysis concerning: the elaboration of biomass supply schedules in “just in time” system, building warehouses (related to their costs and specifications), considering alternatives to be taken into account in the analysis of the number of warehouses needed for the capacity of the investigated heating system,
- The transport scenarios were determined, taking into account optimistic, moderate, and pessimistic alternative solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vezzoli, C.; Ceschin, F.; Osanjo, L.; M’Rithaa, M.K.; Moalosi, R.; Nakazibwe, V.; Diehl, J.C. Distributed/decentralised re-newable energy systems. In Designing Sustainable Energy for All, 1st ed.; Vezzoli, C., Ceschin, F., Osanjo, L., M’Rithaa, M.K., Moalosi, R., Nakazibwe, V., Diehl, J.C., Eds.; Springer: Cham, Switzerland, 2018; pp. 23–39. [Google Scholar]
- Brodny, J.; Tutak, M.; Saki, S.A. Forecasting the structure of energy production from renewable energy sources and biofuels in Poland. Energies 2020, 13, 2539. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The importance of renewable energy sources in Poland’s energy mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Polityka Energetyczna Polski do 2040 Roku (PEP2040), Praca Zbiorowa Wykonana w Ramach Działań Statutowych Ministerstwa Energetyki; Ministry of Energy: Warszawa, Poland, 2018.
- Plutecki, Z.; Duczkowska, A.; Sattler, P.; Ryszczyk, K. Zmiany w konfiguracjach źródeł wytwarzania ciepła szansą dla rozwoju sektora ciepłowniczego. Rynek Energii 2019, 6, 16–22. [Google Scholar]
- Buńczyk, A.; Bogusławski, P. Energetyka Cieplna w Liczbach—2018; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2019; ISBN 978-83-948942-1-4.
- Buńczyk, A.; Bogusławski, P. Energetyka Cieplna w Liczbach—2017; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2018; ISBN 978-83-948942-0-7.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2016; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2017; ISBN 978-83-929538-9-0.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2015; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2016; ISBN 978-83-929538-8-3.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2014; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2015; ISBN 978-83-929538-7-6.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2013; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2014; ISBN 978-83-929538-6-9.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2012; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2013; ISBN 978-83-929538-5-2.
- Buńczyk, A.; Staszkiewicz-Szwarocka, Ł. Energetyka Cieplna w Liczbach—2011; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2012; ISBN 978-83-929538-4-5.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2010; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2011; ISBN 978-83-929538-3-8.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2009; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2010; ISBN 978-83-929538-2-1.
- Buńczyk, A. Energetyka Cieplna w Liczbach—2008; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2009; ISBN 978-83-922476-9-2.
- Departament Rynków Energii Elektrycznej i Ciepła URE. Energetyka Cieplna w Liczbach w 2019 Roku URE; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2020; ISBN 978-83-948942-2-1.
- Cieślak, M. Prognozowanie Gospodarcze. Metody i Zastosowanie; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2005; ISBN 978-83-01-15486-8. [Google Scholar]
- Sefeedpari, P.; Pudełko, R.; J edrejek, A.; Kozak, M.; Borz ecka, M. To what extent is manure produced, distributed, and potentially available for bioenergy? A step toward stimulating circular bio-economy in Poland. Energies 2020, 13, 6266. [Google Scholar] [CrossRef]
- Statistics Poland. Energy Statistics in 2018 and 2019. 2020. Available online: https://stat.gov.pl/obszary-tematyczne/srodowiskoenergia/energia/gospodarka-paliwowo-energetyczna-w-latach-2018-i-2019,4,15.html (accessed on 12 February 2021).
- Eurostat 2021. Energy Data—2020 Edition. Available online: https://ec.europa.eu/eurostat/web/products-statistical-books/-/KS-HB-20-001 (accessed on 2 April 2021).
- Eurostat. 2019. Available online: https://ec.europa.eu/eurostat/data/statistics-a-z/abc (accessed on 2 April 2021).
- Szufa, S. Metody wstępnego przygotowania biomasy do współspalania z węglem w kotłach energetycznych. Politechnika Łódzka. Technika Chłodnicza i Klimatyzacyjna 2011, 9, 433–436. [Google Scholar]
- Tum, M.; Guther, K.P. Validating modelled NPP using statistical yield data. Biomass Bioenergy 2011, 35, 4665–4674. [Google Scholar] [CrossRef]
- RENEW. Residue Biomass Potential Inventory Results. Pobrane 15 Marca 2013 z. Available online: http://www.renew-fuel.com32c (accessed on 2 April 2021).
- Pudełko, R. Ocena Potencjałów Biomasy Ubocznej i Odpadowej w ue-27 i Szwajcarii Oraz Ich Regionalizacja. Monografie i Rozprawy Habilitacyjne. Ph.D. Thesis, 2013; Volume 39, Unpublished materials. [Google Scholar]
- Rajca, P.; Poskart, A.; Chrubasik, M.; Sajdak, M.; Zajemska, M.; Skibiński, A.; Korombel, A. Technological and economic aspect of Refuse Derived Fuel pyrolysis. Renew. Energy 2020, 161, 482–494. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmi ński, K.; Krzyzaniak, M.; Olba-Zi ety, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Rybczy ńska, B.; Krzyzaniak, M.; Lajszner, W.; Graban, Ł.; Peni, D.; Bordiean, A. Thermophysical properties and elemental composition of agricultural and forest solid biofuels versus fossil fuels. J. Elem. 2019, 24, 1215–1228. [Google Scholar] [CrossRef]
- Ślefarski, R.; Czyżewski, P.; Gołębiewski, M. Experimental Study on Combustion of Ch4/Nh3 Fuel Blends in an Industrial Furnace Operated in Flameless Conditions. Therm. Sci. 2020, 24, 3625–3635. [Google Scholar] [CrossRef]
- Jóźwiak, P.; Hercog, J.; Kiedrzyńska, A.; Badyda, K.; Olevano, D. Thermal Effects of Natural Gas and Syngas Co-Firing System on Heat Treatment Process in the Preheating Furnace. Energies 2020, 13, 1698. [Google Scholar] [CrossRef] [Green Version]
- Ślefarski, R.; Jójka, J.; Czyżewski, P.; Gołębiewski, M.; Jankowski, R.; Markowski, J.; Magdziarz, A. Experimental and Nu-merical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products. Energies 2021, 14, 1779. [Google Scholar] [CrossRef]
- Ślefarski, R.; Jójka, J.; Czyżewski, P.; Grzymisławski, P. Experimental investigation on syngas reburning process in a gaseous fuel firing semi-idustrial combustion chamber. Fuel 2018, 217, 490–498. [Google Scholar] [CrossRef]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.F. Dallemand Biomasa na potrzeby energii w UE—Ramy wsparcia Polityka energetyczna. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Soltero, V.M.; Chacartegui, R.; Ortiz, C.; Velázquez, R. Potential of biomass district heating systems in rural areas. Energy 2018, 156, 132–143. [Google Scholar] [CrossRef]
- Smith, W.K.; Cleveland, C.C.; Reed, S.C.; Miller, N.L.; Running, S.W. Bioenergy potential of the United States constrained by satellite observations of existing productivity. Environ. Sci. Technol. 2012, 46, 3536–3544. [Google Scholar] [CrossRef]
- Soltero, V.M.; Quirosa, G.; Peralta, M.E.; Chacartegui, R.; Torres, M. A biomass universal dis-trict heating model for susta-inability evaluation for geographical areas with early experi-ence. Energy 2022, 242, 122954. [Google Scholar] [CrossRef]
- Quirion-Blais, O.; Malladi, K.T.; Sowlati, T.; Gao, E.; Mui, C. Analysis of feedstock require-ment for the expansion of a biomass-fed district heating system considering daily varia-tions in heat demand and biomass quality. Energy Convers. Manag. 2019, 187, 554–564. [Google Scholar] [CrossRef]
- Caputo, P.; Ferla, G.; Ferrari, S. Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy. Energy 2019, 174, 1210–1218. [Google Scholar] [CrossRef]
- Bilandzija, N.; Voca, N.; Jelcic, B.; Jurisic, V.; Matin, A.; Grubor, M.; Kricka, T. Evaluation of Croatian agricultural solid biomass energy potential. Renew. Sustain. Energy Rev. 2018, 93, 225–230. [Google Scholar]
- Jiang, D.; Hao, M.; Fu, J.; Zhuang, D.; Huang, Y. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China. Sci. Rep. 2014, 4, 5816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mboumboue, E.; Njomo, D. Biomass resources assessment and bioenergy generation for a clean and sustainable deve-lopment in Cameroon. Biomass Bioenergy 2018, 118, 16–23. [Google Scholar] [CrossRef]
- Nie, Y.; Cai, W.; Wang, C.; Huang, G.; Ding, Q.; Yu, L.; Li, H.; Ji, D. Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China—The case of sweet sorghum. Appl. Energy 2019, 239, 395–407. [Google Scholar] [CrossRef]
- Burg, V.; Bowman, G.; Erni, M.; Lemm, R.; Thees, O. Analyzing the potential of domestic biomass resources for the energy transition in Switzerland. Biomass Bioenergy 2018, 111, 60–69. [Google Scholar] [CrossRef]
- Namsaraev, Z.B.; Gotovtsev, P.M.; Komova, A.V.; Vasilov, R.G. Current status and potential of bioenergy in the Russian Federation. Renew. Sustain. Energy Rev. 2018, 81, 625–634. [Google Scholar]
- Flisberg, P.; Frisk, M.; Ronnqvist, M.; Guajardo, M. Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study. Energy 2015, 85, 353–365. [Google Scholar] [CrossRef]
- Ko, S.; Lautala, P.; Handler, R.M. Securing the feedstock procurement for bioenergy products: A literature review on the biomass transportation and logistics. J. Clean. Prod. 2018, 200, 205–218. [Google Scholar] [CrossRef]
- Koźlak, A. Nowoczesny System Transportowy Jako Czynnik Rozwoju Regionów w Polsce; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 2012; ISBN 978-83-7326-872-2. [Google Scholar]
- Song, C.; He, J.; Zhang, H. Comprehensive zoning of biomass energy heating in EU coun-tries reference for China from European experience. Chin. J. Popul. Resour. Environ. 2021, 19, 321–329. [Google Scholar] [CrossRef]
- Buńczyk, A. Energetyka Cieplna w Liczbach—2020; Departament Rynków Energii Elektrycznej i Ciepła URE: Warszawa, Poland, 2022; ISBN 978-83-948942-4-5.
- Duczkowska-Kądziel, A. Typowanie efektywnej lokalizacji miejsca składowania biomasy z wykorzystaniem minimalnego drzewa rozpinającego. Logistyka 2014, 6. Available online: https://www.infona.pl/resource/bwmeta1.element.baztech-fce98106-cee3-4e38-9370-94c4fd509ab0 (accessed on 25 May 2022).
- Duczkowska-Kądziel, A.; Duda, J.; Wasilewski, M. Metodyka poszukiwania optymalnego miejsca składowania biomasy za pomocą minimalnego drzewa rozpinającego. Chemik 2013, 67, 935–944. [Google Scholar]
- Bieranowski, J.; Olkowski, J. The concept of an energy self-sufficient farm system compatible with sustainable development in a selected region in Poland. Pol. J. Environ. Stud 2016, 25, 529–544. [Google Scholar] [CrossRef]
- Edwards, R.A.H.; Šúri, M.; Huld, M.A.; Dallemand, J.F. GIS-based assessment of cereal straw energy resource in the European Union. In Proceedings of the 14th European Biomass Conference & Exhibition, Biomass for Energy, Industry and Climate Protection, Paris, France, 17–21 October 2005. [Google Scholar]
- Jarosz, Z. Potencjał energetyczny biomasy roślinnej i możliwości wykorzystania do celów energetycznych. Zesz. Nauk. Szkoły Głównej Gospod. Wiej. Warszawie Probl. Rol. Swiat. 2017, 17, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Mirowski, T.; Mokrzycki, E.; Uliasz–Bocheńczyk, E. Energetyczne Wykorzystanie Biomasy; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2018. [Google Scholar]
- Kowalczyk-Ju´sko, A.; Listosz, A.; Mazur, K.; Macig, M.; Pochwatka, P.; Mazur, A. The State and the Perspectives of the Eco-Energy Infrastructure Development in Biała Podlaska County (Poland). Part II Estimation of Solid Biomass Resources for Energy Purposes. In Proceedings of the E3S Web of Conferences, Online; 2020; Volume 171, p. 01005. Available online: https://www.e3s-conferences.org/?mb=0 (accessed on 25 May 2022).
- Statistics Poland. Energy from Renewable Sources in 2018. 2019. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2018-roku,10,2.html (accessed on 12 February 2021).
- Linstone, H.A.; Turoff, M. The Delphi Method. Techniques and Applications, Electronic Version; Addison-Wesley: Reading, MA, USA, 2002; p. 616. [Google Scholar]
- Głodek, E.; Kalinowski, W. Odnawialne Źródła Energii w Województwie Opolskim; Wyd. Instytut Śląski: Opole, Poland, 2011; ISBN 83-0114-380-0. [Google Scholar]
- Kenneth, A.R.; Charles, R.B. Wright: Matematyka Dyskretna; Z ang. Przeł.; Sepko-Guzicka, E., Guzicki, W., Zakrzewski, P., Eds.; Wyd. Naukowe PWN: Warszawa, Poland, 2005; ISBN 83-0114-380-0. [Google Scholar]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Clifford, S. Wprowadzenie do Algorytmów; Krzysztof, D., Ed.; Translator; Wyd. 8., seria: Klasyka Informatyki; OCLC 749241843; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 2007; ISBN 978-832043328-9. [Google Scholar]
- Neebe, A.W. A Procedure for Locating Emergency-Service Facilities for All Possible Response Distances. J. Oper. Res. Soc. 1988, 39, 743–748. [Google Scholar] [CrossRef] [PubMed]
- O’Kelly, M.E.; Miller, H.J. The Hub Network Design Problem: A Review and Synthesis. J. Transp. Geogr. 1994, 2, 31–40. [Google Scholar] [CrossRef]
- O’Kelly, M.E. The Location of Interacting Hub Facilites. Transp. Sci. 1986, 20, 92–106. [Google Scholar] [CrossRef]
- Denisiuk, W. Techniczne i Ekologiczne Aspekty Wykorzystania Słomy na Cele Grzewcze. Rozprawa doktorska. Ph.D. Thesis, 2003; Unpublished materials. [Google Scholar]
- Rosales-Calderon, O.; Arantes, V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 2019, 12, 240. [Google Scholar] [CrossRef] [Green Version]
- Gradziuk, P. Gospodarcze znaczenie i możliwości wykorzystania słomy na cele energetyczne. In Monografie i Rozprawy Naukowe; IUNG-PIB: Puławy, Poland, 2015; Volume 45, pp. 1–173. [Google Scholar]
- Hryniewicz, M.; Grzybek, A. Available straw surplus for use for energy purposes in 2016. Probl. Agric. Eng. 2017, 3, 15–31. [Google Scholar]
- Niszczota, S.; Dziubiński, K.; Kupidura, A.; Miziołek, D.; Pacuszka, R.; Rafa, W.; Siestrzewitowska, A.; Wieczorkowski, R. Użytkowanie Gruntów i Powierzchnia Zasiewów w 2019 r; Główny Urząd Statystyczny, Departament Rolnictwa: Warszawa, Poland, 2020; ISSN 2353-5180.
- Duda-KIękuś, A. Transport biomasy w logistyce dostaw paliw dla elektrowni systemowych realizujących program zielonej energetyki. Logistyka 2011, 2, 107–118. [Google Scholar]
- Kaczmarek, T. Communal administrative division in the light of 25 years of operation of local government in Poland. Political Sci. Rev. 2016, 1, 63–80. [Google Scholar]
- Kluczkowski, A.; Wyrostkiewicz, M. Circular economy as an important subject of environmental education in the era of energy demand. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2018, 5, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski (accessed on 28 March 2021).
- Dyrektywa Parlamentu Europejskiego i Rady 2015/2193/UE z Dnia 25 Listopada 2015 r. w Sprawie Ograniczenia Niektórych Zanieczyszczeń do Powietrza ze Średnich Obiektów Energetycznego Spalania (Medium Combustion Plants—MCP). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32015L2193 (accessed on 28 March 2021).
- Dyrektywa Parlamentu Europejskiego i Rady 2012/27/UE z dnia 25 października 2012 r. w sprawie efektywności energetycznej. Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=celex%3A32012L0027 (accessed on 28 March 2021).
- Xu, Y.; Yang, K.; Zhou, J.; Zhao, G. Coal-Biomass Co-Firing Power Generation Technology: Current Status, Challenges and Policy Implications. Sustainability 2020, 12, 3692. [Google Scholar] [CrossRef]
Opolskie Voivodeship | ||
---|---|---|
County | Locality | MW |
brzeski | Brzeg | 48.65 |
Grodków | 11.60 | |
kędzierzyńsko-kozielski | Kędzierzyn-Koźle | 22.25 |
kluczborski | Kluczbork | 33.56 |
krapkowicki | Krapkowice | 23.26 |
namysłowski | Namysłów | 24.19 |
nyski | Nysa | 57.00 |
Głuchołazy | 18.60 | |
oleski | Praszka | 12.12 |
opolski | Opole | 180.00 |
Ozimek | 14.00 | |
prudnicki | Lubrza | 33.13 |
strzelecki | Strzelce Opolskie | 30.00 |
County | Community | Acreage | Agricultural Land | Straw Technical Potential | |
---|---|---|---|---|---|
km2 | % | ha | GW h/a | ||
Opolski | Ozimek (O) | 126.50 | 31.0 | 3921.50 | 7 |
Turawa (T) | 171.50 | 30.0 | 5145.00 | 15 | |
Chrząstowice (CH) | 82.31 | 51.0 | 4197.81 | 7 | |
Oleski | Zębowice (Z) | 95.81 | 34.0 | 3257.54 | 7 |
Dobrodzień (D) | 162.80 | 45.0 | 7326.00 | 11 | |
Strzelecki | Kolonowskie (K) | 83.61 | 22.0 | 1839.42 | 3 |
Strzelce Opolskie (SO) | 202.40 | 59.0 | 11,941.6 | 34 | |
Izbicko (I) | 84.93 | 51.0 | 4331.43 | 7 |
MST | OZ | SZCZ | Z | R | LD | RZ | SZM | SW | SZY | RO | BS | LCZ | O | DK | DĘ | DA | LT | KM | SUMA [km] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OZIMEK | OZ | 1 | 0 | |||||||||||||||||
SZCZEDRZYK | SZCZ | 5 | 1 | 5 | ||||||||||||||||
ZĘBOWICE | Z | 17 | 21 | 1 | 0 | |||||||||||||||
RADOWIE | R | 17 | 21 | 5 | 1 | 5 | ||||||||||||||
LIGOTA DOBRZEŃSKA | LD | 18 | 23 | 8 | 13 | 1 | 0 | |||||||||||||
RZĘDOWICE | RZ | 23 | 27 | 9 | 14 | 5 | 1 | 5 | ||||||||||||
SZMEROWICE | SZM | 19 | 24 | 4 | 9 | 4 | 5 | 1 | 8 | |||||||||||
STANISZCZE WIELKIE | SW | 15 | 19 | 19 | 22 | 14 | 19 | 16 | 1 | 0 | ||||||||||
SZYMISZÓW | SZY | 23 | 28 | 34 | 35 | 35 | 38 | 36 | 19 | 1 | 0 | |||||||||
ROZMIERKA | RO | 19 | 23 | 30 | 30 | 30 | 35 | 32 | 13 | 8 | 1 | 21 | ||||||||
BŁOTNICA STRZELECKA | BS | 33 | 37 | 42 | 46 | 34 | 34 | 39 | 27 | 13 | 14 | 1 | 13 | |||||||
LIGOTA CZAMBOROWA | LCZ | 18 | 21 | 32 | 33 | 34 | 39 | 35 | 20 | 10 | 7 | 20 | 1 | 7 | ||||||
OTMICE | O | 19 | 21 | 33 | 33 | 35 | 39 | 36 | 23 | 12 | 11 | 22 | 4 | 1 | 0 | |||||
DĘBSKA KUŹNIA | DK | 8 | 10 | 23 | 23 | 24 | 29 | 26 | 21 | 23 | 22 | 34 | 14 | 15 | 1 | 8 | ||||
DĘBIE | DĘ | 12 | 14 | 27 | 27 | 28 | 33 | 30 | 25 | 23 | 21 | 33 | 15 | 14 | 4 | 1 | 4 | |||
DANIEC | DA | 11 | 13 | 25 | 25 | 26 | 31 | 28 | 22 | 17 | 14 | 27 | 7 | 8 | 6 | 6 | 1 | 21 | ||
LIGOTA TURAWSKA | LT | 13 | 15 | 14 | 9 | 22 | 23 | 18 | 28 | 36 | 32 | 46 | 25 | 33 | 29 | 23 | 19 | 1 | 21 | |
KOTÓRZ MAŁY | KM | 14 | 10 | 25 | 20 | 32 | 37 | 29 | 29 | 39 | 38 | 50 | 24 | 33 | 16 | 16 | 6 | 16 | 1 | 10 |
ILOŚĆ DRÓG | 3 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 1 | 128 |
MST | OZ | SZCZ | Z | R | SW | LCZ | O | DK | DĘ | DA | SUMA [km] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OZIMEK | OZ | 1 | 5 | 0 | ||||||||
SZCZEDRZYK | SZCZ | 5 | 1 | 5 | ||||||||
ZĘBOWICE | Z | 17 | 21 | 1 | 17 | |||||||
RADOWIE | R | 17 | 21 | 5 | 1 | 5 | ||||||
STANISZCZE WIELKIE | SW | 15 | 19 | 19 | 22 | 1 | 15 | |||||
LIGOTA CZAMBOROWA | LCZ | 18 | 21 | 32 | 33 | 20 | 1 | 0 | ||||
OTMICE | O | 19 | 21 | 33 | 33 | 23 | 4 | 1 | 4 | |||
DĘBSKA KUŹNIA | DK | 8 | 10 | 23 | 23 | 21 | 14 | 15 | 1 | 8 | ||
DĘBIE | DĘ | 12 | 14 | 27 | 27 | 25 | 15 | 14 | 4 | 1 | 4 | |
DANIEC | DA | 11 | 13 | 25 | 25 | 22 | 7 | 8 | 6 | 6 | 1 | 13 |
ILOŚĆ DRÓG | 4 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 71 |
MST | OZ | SZM | LD | RZ | |
---|---|---|---|---|---|
OZIMEK | OZ | 1 | |||
SZMEROWICE | SZM | 19 | 1 | ||
LIGOTA DOBRZEŃSKA | LD | 18 | 4 | 1 | |
RZĘDOWICE | RZ | 23 | 5 | 5 | 1 |
MST | OZ | KM | LT | |
---|---|---|---|---|
OZIMEK | OZ | 1 | ||
KOTÓRZ MAŁY | KM | 14 | 1 | |
LIGOTA TURAWSKA | LT | 13 | 16 | 1 |
MST | OZ | SZY | RO | BS | |
---|---|---|---|---|---|
OZIMEK | OZ | 1 | |||
SZYMISZÓW | SZY | 23 | 1 | ||
ROZMIERKA | RO | 19 | 8 | 1 | |
BŁOTNICA STRZELECKA | BS | 33 | 13 | 14 | 1 |
Community | Technical Potential [GWh/a] | Distance from Warehouse to Heating System | |||
---|---|---|---|---|---|
Single-Variant Analysis | Multivariate Analysis | ||||
Strzelce Opolskie | 34 | RO | OZ–RO; 19 km | SZY, RO | OZ–SZY; 23 km OZ–RO; 19 km |
Turawa | 15 | LT | OZ–LT; 13 km | - | * |
Dobrzeń | 11 | LD | OZ–LD; 18 km | LD | OZ–LD; 18 km |
Zębowice | 7 | - | * | Z | OZ–Z; 17 km |
Chrząstowice | 7 | DA | OZ–DA; 12 km | DE | OZ–DE; 12 km |
Izbicko | 7 | - | * | LCZ | OZ–LCZ 18 km |
Ozimek | 7 | - | * | - | * |
Kolonowskie | 3 | - | * | - | * |
SUM | 91 GWh/a | 4 warehouses | 62 km | 6 warehouses | 107 km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duczkowska, A.; Kulińska, E.; Plutecki, Z.; Rut, J. Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System. Energies 2022, 15, 4268. https://doi.org/10.3390/en15124268
Duczkowska A, Kulińska E, Plutecki Z, Rut J. Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System. Energies. 2022; 15(12):4268. https://doi.org/10.3390/en15124268
Chicago/Turabian StyleDuczkowska, Anna, Ewa Kulińska, Zbigniew Plutecki, and Joanna Rut. 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System" Energies 15, no. 12: 4268. https://doi.org/10.3390/en15124268
APA StyleDuczkowska, A., Kulińska, E., Plutecki, Z., & Rut, J. (2022). Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System. Energies, 15(12), 4268. https://doi.org/10.3390/en15124268