Thermophysical Properties of Liquids in Not Fully Stable States—From the First Steps to the Current Trends
Abstract
:1. Introduction
2. Background
3. Results
3.1. Heat Capacity of Binary Liquid Mixtures in the Liquid–Liquid Critical Region
3.2. Characteristic Features of Light Scattering in the Critical Liquid–Vapor Region of a Single-Component System
3.3. Characteristic Features of Free-Convective Heat Transfer in the Critical Region of Liquid–Vapor of a One-Component System
3.4. Discussion of Variants of a Superheated Liquid Spinodal Position on the Phase Diagram of Water
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations
C | heat capacity |
cp | specific isobaric heat capacity |
c | concentration |
Gr | Grashof number |
I | current |
I΄ | intensity of the scattered light |
Nu | Nusselt number |
p | pressure |
Pr | Prandtl number |
t | time |
T | temperature |
ΔT | temperature rise |
U | voltage drop |
V | volume |
v | specific volume |
β | volume expansion coefficient |
κ | heat transfer coefficient |
λ | wavelength |
μ | chemical potential |
Symbols | |
c | critical point |
ll | liquid–liquid equilibrium |
s | liquid–vapor equilibrium |
sp | spinodal |
Abbreviations | |
LCST | lower critical solution temperature |
TEA | triethylamine |
UCST | upper critical solution temperature |
References
- Chen, L. Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems; IGI Global: Hershey, PA, USA, 2020. [Google Scholar]
- Smakulski, P.; Pietrowicz, S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques. Appl. Therm. Eng. 2016, 104, 636–646. [Google Scholar] [CrossRef]
- Rashidi, S.; Karimi, N.; Sunden, B.; Mahian, O.; Harmand, S. Passive techniques to enhance heat transfer in various thermal systems. J. Therm. Anal. Calorim. 2020, 140, 875–878. [Google Scholar] [CrossRef]
- Pavlenko, A.N.; Kuznetsov, D.V. Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure Stabilization of HTS Devices. J. Eng. Thermophys. 2021, 30, 526–562. [Google Scholar] [CrossRef]
- Abdulagatov, I.M.; Skripov, P.V. Thermodynamic and Transport Properties of Supercritical Fluids. Part 2: Review of Transport Properties. Russ. J. Phys. Chem. B 2021, 15, 1171–1188. [Google Scholar] [CrossRef]
- Anisimov, M.A. Letter to the Editor: Fifty Years of Breakthrough Discoveries in Fluid Criticality. Int. J. Thermophys. 2011, 32, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Michels, A.; Sengers, J.V. The Thermal Conductivity of Carbon Dioxide in the Critical Region: III. Verification of the Absence of Convection. Physica 1962, 28, 1238–1264. [Google Scholar] [CrossRef]
- Nieto de Castro, C.A.; Lourenço, M.J.V. Towards the Correct Measurement of Thermal Conductivity of Ionic Melts and Nanofluids. Energies 2020, 13, 99. [Google Scholar] [CrossRef] [Green Version]
- Debenedetti, P.G. Metastable Liquids: Concepts and Principles; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Skripov, V.P. Metastable Liquids; Halsted Press: Sydney, Australia; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Skripov, V.P.; Koverda, V.P. Spontaneous Crystallization of Undercooled Liquids; Nauka: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Skripov, V.P.; Sinitsyn, E.N.; Pavlov, P.A.; Ermakov, G.V.; Muratov, G.N.; Bulanov, N.V.; Baidakov, V.G. Thermophysical Properties of Liquids in the Metastable (Superheated) State; Gordon and Breach Science Publishers: London, UK, 1988. [Google Scholar]
- Skripov, V.P.; Faizullin, M.Z. Crystal–Liquid–Gas Phase Transitions and Thermodynamic Similarity; Wiley–VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Skripov, V.P. High-Power Homogeneous nucleation in melts and amorphous films, Current topics in material science. In Crystal Growth and Materials; Chapter 10; Kalidas, E., Scheel, H., Eds.; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1977; pp. 327–378. [Google Scholar]
- Skripov, V.P. Metastable States. J. Non-Equilib. Thermodyn. 1992, 17, 193–236. [Google Scholar]
- Skripov, P.V.; Skripov, A.P. The Phenomenon of Superheat of Liquids: In Memory of Vladimir P. Skripov. Int. J. Thermophys. 2010, 31, 816–830. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. In remembrance of Vladimir P. Skripov: Some personal reflections. Interfac. Phenom. Heat Transf. 2017, 5, IX–XVII. [Google Scholar] [CrossRef]
- Semenchenko, V.K.; Skripov, V.P. Second-Order Phase Transitions and Critical Phenomena. III. Heat capacity of liquid binary mixtures in the critical region of separation. Zhurnal Fiz. Khimii 1951, 25, 362–368. (In Russian) [Google Scholar]
- Skripov, V.P.; Kolpakov, Y.D. Light Scattering in carbon dioxide along subcritical and supercritical isotherms. In Critical Phenomena and Fluctuations in Solutions; Shakhparonov, M.I., Ed.; AS USSR: Moscow, Russia, 1960; pp. 126–136. (In Russian) [Google Scholar]
- Skripov, V.P.; Potashev, P.P. Convection and Heat Exchange near the Critical Point of Carbon Dioxide. Zhurnal Prikl. Mekhaniki Tekhnicheskoi Fiz. 1962, 5, 30–34. (In Russian) [Google Scholar]
- Skripov, V.P. A phase diagram of water under negative pressures. High Temp. 1993, 31, 333–337. [Google Scholar]
- Kirillov, P.L.; Bogoslovskaya, G.P. Generation IV supercritical water-cooled nuclear reactors: Realistic prospects and research program. Nucl. Energy Technol. 2019, 5, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Pioro, I.L. Supercritical-Fluids Thermophysical Properties and Heat Transfer in Power-Engineering Applications. In Advanced Supercritical Fluids Technologies; Chapter 1; Pioro, I.L., Ed.; IntechOpen: London, UK, 2020; pp. 1–41. [Google Scholar] [CrossRef] [Green Version]
- Ching, E.J.; Avedisian, C.T.; Carrier, M.J.; Cavicchi, R.E.; Young, J.R.; Land, B.R. Measurement of the bubble nucleation temperature of water on a pulse-heated thin platinum film supported by a membrane using a low-noise bridge circuit. Int. J. Heat Mass Transf. 2014, 79, 82–93. [Google Scholar] [CrossRef]
- Xing, W.; Vutha, A.K.; Yu, X.; Ullmann, A.; Brauner, N.; Peles, Y. Liquid/liquid phase separation heat transfer at the microscale. Int. J. Heat Mass Transf. 2017, 107, 53–65. [Google Scholar] [CrossRef]
- Kraemer, T. Printing enters the jet age. Invent. Technol. 2001, 16, 18–27. [Google Scholar]
- Suh, J.; Cytrynowicz, D.; Gerner, F.M.; Henderson, H.T. A MEMS bubble pump for an electronic cooling device. J. Micromech. Microeng. 2010, 20, 125025. [Google Scholar] [CrossRef]
- Antonov, D.V.; Kuznetsov, G.V.; Strizhak, P.A.; Rybdylova, O.; Sazhin, S.S. Micro-explosion and autoignition of composite fuel/water droplets. Combust. Flame 2019, 210, 479–489. [Google Scholar] [CrossRef]
- Antonov, D.V.; Strizhak, P.A. Intensification of Vaporization and Secondary Atomization of Droplets of Fire-Extinguishing Liquid Composition. Tech. Phys. Lett. 2020, 46, 122–125. [Google Scholar] [CrossRef]
- George, S.D.; Chidangil, S.; Mathur, D. Minireview: Laser-Induced Formation of Microbubbles—Biomedical Implications. Langmuir 2019, 35, 10139–10150. [Google Scholar] [CrossRef] [PubMed]
- Chudnovskii, V.; Mayor, A.; Kiselev, A.; Yusupov, V. Foaming of blood in endovenous laser treatment. Lasers Med. Sci. 2018, 33, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Ullmann, A.; Brauner, N.; Plawsky, J.; Peles, Y. Advancing micro-scale cooling by utilizing liquid-liquid phase separation. Sci. Rep. 2018, 8, 12093. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.V.; Shamirzaev, A.S.; Mordovskoy, A.S. Prospects for using two-phase micro-size systems for high heat flux removal. J. Phys. Conf. Ser. 2021, 2057, 012058. [Google Scholar] [CrossRef]
- Antonov, D.V.; Kuznetsov, G.V.; Fedorenko, R.M.; Strizhak, P.A. Ratio of water/fuel concentration in a group of composite droplets on high-temperature heating. Appl. Therm. Eng. 2022, 206, 118107. [Google Scholar] [CrossRef]
- Lexin, M.A.; Yagov, V.V.; Zabirov, A.R.; Kanin, P.K.; Vinogradov, M.M.; Molotova, I.A. Investigation of Intensive Cooling of High-Temperature Bodies in BinaryWater-Isopropanol Mixture. High Temp. 2020, 58, 369–376. [Google Scholar] [CrossRef]
- Semenchenko, V.K. Second-Order Phase Transitions and Critical Phenomena. Zhurnal Fiz. Khimii 1947, 21, 1461–1469. (In Russian) [Google Scholar]
- Imre, A.R.; Kraska, T. Stability limits in binary fluids mixtures. J. Chem. Phys. 2005, 122, 064507. [Google Scholar] [CrossRef]
- Igolnikov, A.A.; Rutin, S.B.; Skripov, P.V. Short-term measurements in thermally-induced unstable states of mixtures with LCST. Thermochim. Acta 2021, 695, 178815. [Google Scholar] [CrossRef]
- Skripov, V.P.; Skripov, A.V. Spinodal decomposition (phase transitions via unstable states). Sov. Phys. Usp. 1979, 22, 389–410. [Google Scholar] [CrossRef]
- Pittois, S.; Van Roie, B.; Glorieux, C.; Thoen, J. Thermal conductivity, thermal effusivity, and specific heat capacity near the lower critical point of the binary liquid mixture n-butoxyethanol–water. J. Chem. Phys. 2004, 121, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- Skripov, V.P. Heat Capacity of Liquid Binary Mixtures in the Critical Region of Demixing. Ph.D. Thesis, Moscow State University, Moscow, Russia, 1953. Available online: https://disk.yandex.ru/i/-GmlJ1l5OErrjQ (accessed on 15 June 2022). (In Russian).
- Skripov, V.P.; Semenchenko, V.K. Second-Order Phase Transitions and Critical Phenomena. V. On the maximum of heat capacity in the critical region of separation of binary liquid systems. Zhurnal Fiz. Khimii 1955, 29, 174–184. (In Russian) [Google Scholar]
- Ivanov, D.Y. Critical Behavior of Nonideal Systems; WILEY-VCH Verlag GmbH & Co: Weinheim, Germany, 2008. [Google Scholar]
- Levelt Sengers, J.M.H. Critical Exponents at the Turn of the Century. Physica A 1976, 82, 319–351. [Google Scholar] [CrossRef]
- Skripov, V.P.; Kolpakov, Y.D. Light Scattering in the Vicinity of the Critical Point Liquid-Vapor. I. Experimental Equipment. Opt. Spectrosc. 1965, 19, 392–402. (In Russian) [Google Scholar]
- Skripov, V.P.; Kolpakov, Y.D. Light Scattering in the Vicinity of the Critical Point Liquid-Vapor. II. Breakdown of the Rayleigh Scattering Law. Opt. Spectrosc. 1965, 19, 616–622. (In Russian) [Google Scholar]
- Kolpakov, Y.D. Scattering of Light by Carbon Dioxide and Sulfur Hexafluoride in the Vicinity of the Critical Point. Ph.D. Thesis, Ural Polytechnic Institute, Sverdlovsk, Russia, 1965. (In Russian). [Google Scholar]
- Michels, A.; Sengers, J.V.; van der Gulik, P.S. The Thermal Conductivity of Carbon Dioxide in the Critical Region: II. Measurements and Conclusions. Physica 1962, 28, 1216–1237. [Google Scholar] [CrossRef]
- Abdulagatov, I.M.; Skripov, P.V. Thermodynamic and Transport Properties of Supercritical Fluids. Part 1: Review of Thermodynamic Properties. Russ. J. Phys. Chem. B 2020, 14, 1178–1216. [Google Scholar] [CrossRef]
- Krichevskiy, I.R. Decision of the meeting on Critical Phenomena and Fluctuations in Solutions. In Critical Phenomena and Fluctuations in Solutions; Shakhparonov, M.I., Ed.; AS USSR: Moscow, Russia, 1960; pp. 189–191. (In Russian) [Google Scholar]
- Green, M.S. Introduction. In Proceedings of “Phenomena in the Neighbourhood of Critical Points”; Green, M.S., Sengers, J.V., Eds.; NBS Miscellaneous Publications: Washington, DC, USA, 1966; p. IX. [Google Scholar]
- Skripov, P.V.; Rutin, S.B. Features of supercritical heat transfer at short times and small sizes. Int. J. Thermophys. 2021, 42, 110. [Google Scholar] [CrossRef]
- Dubrovina, E.N.; Skripov, V.P. Convection and Heat Exchange near the Critical Point of Carbon Dioxide. Zhurnal Prikl. Mekhaniki Tekhnicheskoi Fiz. 1965, 1, 115–119. (In Russian) [Google Scholar]
- Dubrovina, E.N.; Skripov, V.P. Free-convective heat exchange with sulfur hexafluoride in the supercritical region. Zhurnal Prikl. Mekhaniki Tekhnicheskoi Fiz. 1969, 5, 152–155. (In Russian) [Google Scholar] [CrossRef]
- Schmidt, E. Warmetransport Durch Naturliche Konvektion in Stoffen bei Kritischem Zustand. Int. J. Heat Mass Transf. 1960, 1, 92–101. [Google Scholar] [CrossRef]
- Rutin, S.B.; Igolnikov, A.A.; Skripov, P.V. High-Power Heat Release in Supercritical Water: Insight into the Heat Transfer Deterioration Problem. J. Eng. Thermophys. 2020, 29, 67–74. [Google Scholar] [CrossRef]
- Speedy, R.J. Stability-limit conjecture. An interpretation of the properties of water. J. Phys. Chem. 1982, 86, 982–991. [Google Scholar] [CrossRef]
- Angell, C.A. Supercooled water. Ann. Rev. Phys. Chem. 1983, 34, 593. [Google Scholar] [CrossRef]
- Furth, R. On the theory of the liquid state: I. The statistical treatment of the thermodynamics of liquids by the theory of holes. Proc. Cambr. Philos. Soc. 1941, 37, 252–275. [Google Scholar] [CrossRef]
- Skripov, P.V.; Igolnikov, A.A.; Rutin, S.B.; Melkikh, A.V. Heat transfer by unstable solution having the lower critical solution temperature. Int. J. Heat Mass Transf. 2022, 184, 122290. [Google Scholar] [CrossRef]
- Gurashkin, A.L.; Starostin, A.A.; Ermakov, G.V.; Skripov, P.V. Communication: High speed optical investigations of a character of boiling-up onset. J. Chem. Phys. 2012, 136, 021102. [Google Scholar] [CrossRef]
- Gurashkin, A.L.; Starostin, A.A.; Skripov, P.V. Spontaneous Boiling-Up Onset: Activation Effect of Laser Pulses. J. Eng. Thermophys. 2021, 30, 51–57. [Google Scholar] [CrossRef]
- Skripov, P.V.; Smotritskii, A.A.; Starostin, A.A.; Shishkin, A.V. A method of controlled pulse heating: Applications. J. Eng. Thermophys. 2007, 16, 155. [Google Scholar] [CrossRef]
- Rutin, S.B.; Galkin, D.A.; Skripov, P.V. Investigation of not fully stable fluids by the method of controlled pulse heating. 3. Attainable superheat of solutions with different types of critical curve. Thermochim. Acta 2017, 651, 47–52. [Google Scholar] [CrossRef]
- Skripov, V.P.; Vinogradov, V.E. Kinetic Aspect of the Life of Tensile Specimens: A Comparison of Two Approaches. J. Appl. Mech. Tech. Phys. 2005, 46, 100–105. [Google Scholar] [CrossRef]
- Nikitin, E.D.; Popov, A.P.; Bogatishcheva, N.S.; Faizullin, M.Z. Critical Temperatures, Pressures, Heat Capacities, and Thermal Diffusivities of C3 to C6 Dinitriles. J. Chem. Eng. Data 2022, 67, 836–845. [Google Scholar] [CrossRef]
- Igolnikov, A.A.; Rutin, S.B.; Skripov, P.V. Short-term comparison of heat conduction and critical parameters for thermally unstable mixtures. AIP Conf. Proc. 2019, 2174, 020104. [Google Scholar]
- Rutin, S.B. Voltage-controlled precision electronic power regulator. Rev. Sci. Instrum. 2021, 92, 124708. [Google Scholar] [CrossRef] [PubMed]
- Rutin, S.B.; Igolnikov, A.A.; Skripov, P.V. Study of heat transfer to supercritical pressure water across a wide range of parameters in pulse heating experiments. Appl. Therm. Eng. 2022, 201, 117740. [Google Scholar] [CrossRef]
- Volosnikov, D.V.; Povolotskiy, I.I.; Skripov, P.V. Heat conduction of superheated mixtures: Relationship with excess volume. J. Eng. Thermophys. 2022, 31, 19–31. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skripov, P. Thermophysical Properties of Liquids in Not Fully Stable States—From the First Steps to the Current Trends. Energies 2022, 15, 4440. https://doi.org/10.3390/en15124440
Skripov P. Thermophysical Properties of Liquids in Not Fully Stable States—From the First Steps to the Current Trends. Energies. 2022; 15(12):4440. https://doi.org/10.3390/en15124440
Chicago/Turabian StyleSkripov, Pavel. 2022. "Thermophysical Properties of Liquids in Not Fully Stable States—From the First Steps to the Current Trends" Energies 15, no. 12: 4440. https://doi.org/10.3390/en15124440
APA StyleSkripov, P. (2022). Thermophysical Properties of Liquids in Not Fully Stable States—From the First Steps to the Current Trends. Energies, 15(12), 4440. https://doi.org/10.3390/en15124440