Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results and Discussion
4.1. Technical Aspects of Magnesium Sources for Phosphorus Recovery
4.1.1. Magnesium Chloride
4.1.2. Bittern
4.1.3. Seawater
4.1.4. Wastewater
4.1.5. Other Magnesium Sources
4.2. Economical Aspects of Magnesium Source for Phosphorus Recovery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rubio-Rincón, F.; Lopez-Vazquez, C.; Ronteltap, M.; Brdjanovic, D. Seawater for phosphorus recovery from urine. Desalination 2014, 348, 49–56. [Google Scholar] [CrossRef]
- Shen, Y.; Ogejo, J.A.; Bowers, K.E. Abating the Effects of Calcium on Struvite Precipitation in Liquid Dairy Manure. Trans. ASABE 2011, 54, 325–336. [Google Scholar] [CrossRef]
- High Level Expert Forum, FAO Global Agriculture towards 2050. 2009. Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 4 December 2021).
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages. Environ. Sci. Technol. 2008, 43, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Shaddel, S.; Grini, T.; Andreassen, J.-P.; Østerhus, S.W.; Ucar, S. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: Towards enhancing sustainability and economics of struvite crystallization. Chemosphere 2020, 256, 126968. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.-L.; Ghyselbrecht, K.; Monballiu, A.; Rottiers, T.; Sansen, B.; Pinoy, L.; Meesschaert, B. Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes. Chemosphere 2018, 210, 867–876. [Google Scholar] [CrossRef]
- Suyamud, B.; Ferrier, J.; Csetenyi, L.; Inthorn, D.; Gadd, G.M. Biotransformation of struvite by Aspergillus niger: Phosphate release and magnesium biomineralization as glushinskite. Environ. Microbiol. 2020, 22, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ye, X.; Zhang, Z.; Ye, Z.-L.; Chen, S. Selection of cost-effective magnesium sources for fluidized struvite crystallization. J. Environ. Sci. 2017, 70, 144–153. [Google Scholar] [CrossRef]
- Antonini, S.; Arias, M.A.; Eichert, T.; Clemens, J. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere 2012, 89, 1202–1210. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, M.; Wang, C.; Liang, C.; Shen, Z.; Xu, K. A green method for the simultaneius recovery of phosphate and potassium from hydroluzed urine as value-added fertilizer using food waste. Reosur. Conserv. Recycl. 2020, 157, 104793. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, W.; Ji, Y.; Fan, M.; Oenema, O.; Zhang, F. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 2007, 80, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Chen, Q.; Zhao, C.; Fu, Y.; Li, J.; Feng, Y.; Li, L. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite. Chemosphere 2020, 255, 127005. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xu, C.; Zhang, W. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology. Bioresour. Technol. 2011, 102, 2523–2528. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Min, K.J.; Lee, K.; Yu, M.S.; Park, K.Y. Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environ. Eng. Res. 2016, 22, 12–18. [Google Scholar] [CrossRef]
- Le, V.-G.; Vu, C.-T.; Shih, Y.-J.; Bui, X.-T.; Liao, C.-H.; Huang, Y.-H. Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chem. Eng. J. 2019, 384, 123282. [Google Scholar] [CrossRef]
- Zin, M.M.T.; Tiwari, D.; Kim, D.-J. Maximizing ammonium and phosphate recovery from food wastewater and incinerated sewage sludge ash by optimal Mg dose with RSM. J. Ind. Eng. Chem. 2020, 86, 136–143. [Google Scholar] [CrossRef]
- Pinatha, Y.; Polprasert, C.; Englande, A., Jr. Product and cost prespectives of phosphorus recovery from human urine using solid waste ash and sea salt addition—A case of Thailand. Sci. Total Environ. 2020, 713, 136514. [Google Scholar] [CrossRef]
- Wu, S.; Zou, S.; Liang, G.; Qian, G.; He, Z. Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. Sci. Total Environ. 2018, 610–611, 137–146. [Google Scholar] [CrossRef]
- Rahaman, S.; Mavinic, D.S.; Meikleham, A.; Ellis, N. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Water Res. 2014, 51, 1–10. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Fattah, K.P.; Mavinic, D.S. Investigating techniques to determine magnesium addition requirements for the operation of a struvite crystallization process. Int. J. Environ. Sci. Technol. 2013, 12, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Lahav, O.; Telzhensky, M.; Zewuhn, A.; Gendel, Y.; Gerth, J.; Calmano, W.; Birnhack, L. Struvite recovery from munisipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source. Sep. Purif. Technol. 2013, 108, 103–110. [Google Scholar] [CrossRef]
- Guadie, A.; Belay, A.; Liu, W.; Yesigat, A.; Hao, X.; Wang, A. Rift Valley Lake as a potential magnesium source to recover phosphorus from urine. Environ. Res. 2020, 184, 109363. [Google Scholar] [CrossRef] [PubMed]
- Orner, K.D.; Camacho-Cespedes, F.; Cunningham, J.A.; Mihelcic, J.R. Assessment of nutrient fluxes and recovery for a small-scaleagricultural waste management system. J. Environ. Manag. 2020, 267, 110626. [Google Scholar] [CrossRef]
- Shaddel, S.; Grini, T.; Ucar, S.; Azrague, K.; Andreassen, J.-P.; Østerhus, S.W. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Water Res. 2020, 173, 115572. [Google Scholar] [CrossRef]
- Tao, W.; Bayrakdar, A.; Wang, Y.; Agyeman, F. Three-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis, precipitation and vacuum stripping. J. Environ. Manag. 2019, 249, 109435. [Google Scholar] [CrossRef]
- Heraldy, E.; Rahmawati, F.; Heriyanto; Putra, D. Preparation of struvite from desalination waste. J. Environ. Chem. Eng. 2017, 5, 1666–1675. [Google Scholar] [CrossRef]
- Fattah, K.P.; Sina, S.; Aqeel, A. Use of Desalinated Reject Water as a Source of Magnesium for Phosphorus Recovery. Int. J. Chem. Eng. Appl. 2013, 4, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Han, Z.; Lin, X.; Duan, Y.; Du, J.; Ye, Z.; Zhu, J. Study on removal of phosphorus as struvite from synthetic wastewater using a pilot-scale electrodialysis sustem with magnesium anode. Sci. Total Environ. 2020, 726, 138221. [Google Scholar] [CrossRef]
- Kékedy-Nagy, L.; Teymouri, A.; Herring, A.; Greenlee, L. Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode. Chem. Eng. J. 2020, 380, 122480. [Google Scholar] [CrossRef]
- Luo, Y.; Li, H.; Huang, Y.-R.; Zhao, T.-L.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. Bacterial mineralization of struvite using MgO as magnesium source and its potential for nutrient recovery. Chem. Eng. J. 2018, 351, 195–202. [Google Scholar] [CrossRef]
- Mavhungu, A.; Masindi, V.; Foteinis, S.; Mbaya, R.; Tekere, M.; Kortidis, I.; Chatzisymeon, E. Advocating circular economy in wastewater treatment: Struvite formation and drinking water reclamation from real municipal effluents. J. Environ. Chem. Eng. 2020, 8, 103957. [Google Scholar] [CrossRef]
- Aguado, D.; Barat, R.; Bouzas, A.; Seco, A.; Ferrer, J. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Sci. Total Environ. 2019, 672, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yu, J.; Luo, H.; Wang, H.; Xu, P.; Zhang, Y. Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chem. Eng. J. 2019, 382, 123001. [Google Scholar] [CrossRef]
- Ouchah, L.; Mandi, L.; Berrekhis, F.; Ouazzani, N. Essays of phosphorus recovery into struvite from fertilizer industry effluents. Desalin. Water Treat. 2013, 52, 2886–2892. [Google Scholar] [CrossRef]
- Kumari, S.; Jose, S.; Tyagi, M.; Jagadevan, S. A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. J. Clean. Prod. 2020, 254, 120037. [Google Scholar] [CrossRef]
- Huang, H.; Guo, G.; Zhang, P.; Zhang, D.; Liu, J.; Tang, S. Feasibility of physicochemical recovery of nutrients from swine wastewater: Evaluation of three kinds of magnesium sources. J. Taiwan Inst. Chem. Eng. 2017, 70, 209–218. [Google Scholar] [CrossRef]
- Rahman, M.; Liu, Y.; Kwag, J.-H.; Ra, C. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J. Hazard. Mater. 2011, 186, 2026–2030. [Google Scholar] [CrossRef]
- Ryu, H.-D.; Lim, C.-S.; Kang, M.-K.; Lee, S.-I. Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. J. Hazard. Mater. 2012, 221–222, 248–255. [Google Scholar] [CrossRef]
- Di Iaconi, C.; Pagano, M.; Ramadori, R.; Lopez, A. Nitrogen recovery from a stabilized municipal landfill leachate. Bioresour. Technol. 2010, 101, 1732–1736. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, A. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ. Sci. Pollut. Res. 2015, 23, 5949–5959. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, A.; Ruggiero, C.; De Rosa, S. A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Saf. Environ. Prot. 2012, 91, 311–320. [Google Scholar] [CrossRef]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorus recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, N.; Dey, B.; Unpaprom, Y.; Ramaraj, R.; Maniam, G.P.; Govindan, N.; Jayaraman, S.; Arunachalam, T.; Paramasivan, B. Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 105579. [Google Scholar] [CrossRef]
- Sena, M.; Morris, M.R.; Seib, M.; Hicks, A. An exploration of economic valuation of phosphorus in the environment and its implications in decision making for resource recovery. Water Res. 2019, 172, 115449. [Google Scholar] [CrossRef]
- Abdalla, H.; Sinno, S.; Fattah, K. Environmental life cycle assessment of mineral phosphate fertilizer production. In Proceedings of the 5th SEE SDEWES Conference, Vlorë, Albania, 22–26 May 2022. [Google Scholar]
Pure struvite formation chemical reactions | |
(1) | |
(2) | |
(3) | |
(4) | |
(5) | |
(6) | |
(7) | |
(8) | |
(9) | |
(10) | |
Chemical reactions when competitive ions are present | |
(11) | |
(12) | |
(13) | |
(14) | |
(15) | |
(16) |
References | Magnesium Source | Approximate Magnesium Concentration |
---|---|---|
[9] | Bitterns | 2000–3000 mg/L |
[6,27,35] | Seawater | 1276–1300 mg/L |
[20] | Leachate | ~722 mg/L |
[36] | Wastewater from shale oil and gas production | 764 mg/L |
[29,30] | Desalination reject brine | 9010 mg/L |
[37] | Fertilizer industry’s wastewater | 1178 mg/L |
References | Magnesium Sources | Wastewater Influent | pH | Molar Ratio Mg:P | Phosphorus Removal |
---|---|---|---|---|---|
[9] | Bittern | Swine wastewater | 8.5 | 1.5:1 | 71% |
[26] | Bittern | Animal manure anaerobic digester effluent | 8.52 | 79% | |
[27] | Seawater | Dewatering of biological sludge | 8.8 | 1.67:1 | 99% |
[38] | Seawater | Synthetic wastewater | 9 | Mg:PO4 1.72:1 | 95% |
[1] | Seawater | Toilet flushing water | 9 | 3.3:1 | 99% |
[35] | Seawater | Urine | 8.8 | 1:1 | 87% |
[7] | Synthetic seawater | Synthetic swine wastewater | 9.2 | Ca:Mg 0.3:1.3 | |
[37] | Fertilizer industry wastewater | Fertilizer industry | 9 | N:P * 2:1 | 98% |
[39] | Magnesium oxide Supernatant containing magnesium | Swine wastewater | - 9 | 3:1 1.2:1 | 98% 98.5% |
[25] | Rift lake | Synthetic and real urine | 9 | 1.6:1 | 98% |
[15] | Pyrolysate magnesite (53% Mg) | Piggery wastewater | 8/8.5 | 2.5:1 | 96% |
[31] | Magnesium anode | Synthetic wastewater | 8.8 | 65% | |
[17] | Magnesium chloride hexahydrate | Urine | 10 | 1.5:1 | 98.4% |
[40] | Magnesium chloride | Swine wastewater | 10 | 1:1 | 93% |
[18] | Magnesium chloride hexahydrate | Incinerated municipal sewage sludge | 9.63 | 1.59:1 | 97.7% |
[19] | Magnesium chloride Sea salt | Urine | 11 9 | 1 1.25 | 97% 91.6% |
[41] | Magnesium chloride hexahydrate | Semiconductor wastewater | 9 | 1:1 | NH4—N recovery 89% |
[20] | Leachate | Phosphoric acid | 9.5 | Mg + Caresidual:P 1:1.5 | Mg recovery 98.6% |
[29] | Reject brine | Phosphoric acid | 9–10 | 1:1 | |
[36] | Produced water (wastewater) | Sodium phosphate | 9.5 | Mg:N:P 1.5:1:1.5 | Mg Recovery 96.8% |
[14] | Dolomite | Synthetic livestock wastewater | 9 | 92% | |
[28] | Magnesium chloride | Hydrolyzed urine | 1 | 95% | |
[16] | Magnesium chloride | Urine | 9 | Mg:PO4 1.2:1.1 | 98.9% |
Reference | Type of Wastewater Treated | Nutrient Source | Unit Price | Amount Needed | Cost (USD/m3) | Total Cost USD/m3 |
---|---|---|---|---|---|---|
[42] | Landfill leachate | MgO | 700 USD/ton | 15 kg/m3 | 10.2 | 27.4 |
H3PO4 | 900 USD/m3 | 15.4 L/m3 | 13.9 | |||
NaOH | 220 USD/m3 | 13.9 L/m3 | 3.3 | |||
[43] | Landfill leachate | Bone meal (P source) | 79 USD/ton | 24.4 kg/m3 | 1.8 | 8.8 |
Bittern (Mg source) | 17 USD/ton | 71.5 kg/m3 | 1.1 | |||
NaOH | 266 USD/m3 | 15.8 L/m3 | 4.2 | |||
H2SO4 (96% w/o) | 209 USD/m3 | 8.2 L/m3 | 1.7 | |||
[44] | Pre-treated leachate for enhanced nitrogen removal | Bone meal (P source) | - | - | 1.1–2.3 | 16.2–18.6 |
Bittern (Mg source) | - | - | 1.1–2.3 | |||
NaOH | 226 USD/m3 | 24.5 L/m3 | 5.5 | |||
H2SO4 (96% w/o) | 199 USD/m3 | 8.5 L/m3 | 1.7 | |||
H2O2 | 334 USD/m3 | 25.7 L/m3 | 6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattah, K.P.; Sinno, S.; Atabay, S.; Khan, Z.; Al-Dawood, Z.; Yasser, A.K.; Temam, R. Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste. Energies 2022, 15, 4585. https://doi.org/10.3390/en15134585
Fattah KP, Sinno S, Atabay S, Khan Z, Al-Dawood Z, Yasser AK, Temam R. Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste. Energies. 2022; 15(13):4585. https://doi.org/10.3390/en15134585
Chicago/Turabian StyleFattah, Kazi Parvez, Sarah Sinno, Serter Atabay, Zahid Khan, Zahraa Al-Dawood, Alaa Kamel Yasser, and Riyad Temam. 2022. "Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste" Energies 15, no. 13: 4585. https://doi.org/10.3390/en15134585
APA StyleFattah, K. P., Sinno, S., Atabay, S., Khan, Z., Al-Dawood, Z., Yasser, A. K., & Temam, R. (2022). Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste. Energies, 15(13), 4585. https://doi.org/10.3390/en15134585