Compact Decentral Façade-Integrated Air-to-Air Heat Pumps for Serial Renovation of Multi-Apartment Buildings
Abstract
:1. Introduction
1.1. Minimal Invasive Serial Renovation
1.2. Review of Compact Air-Sourced Heat Pumps for Renovation
1.3. Identification of Research Gaps
1.4. Contribution and Novelty of this Work
2. Concept and Methods
2.1. Concepts of Façade-Integrated Air-to-Air Heat Pumps for Renovation
2.1.1. Exhaust Air-to-Supply Air Heat Pump System
2.1.2. Air-to-Air Split-Type Heat Pump with MVHR
2.1.3. Exhaust Air-to-Supply Air Heat Pump System with Secondary Air Recirculation
2.2. Holistic and Systematic Optimization Approach
2.2.1. Component-Level Optimization
CFD Simulation-Based Optimization of HP Outdoor Unit
- Flow homogeneity on the evaporator surface;
- Air-side pressure drop minimization;
- Effect on the overall performance of the refrigerant cycle by means of coupled refrigerant cycle simulations.
- Fan type (axial or radial);
- Evaporator geometry;
- Evaporator configuration compared to the position of the fans.
- Represents a good compromise between accuracy, robustness and convergence time;
- Requires fine meshing in the near-wall areas and in nearby rotating domains;
- Is generally suggested for flows over complex and/or rotating geometries.
Fan Performance and Sound Emissions Testing
2.2.2. System-Level Optimization—Refrigerant Cycle
2.2.3. Building-Level Optimization
2.2.4. Mock-up Testing
2.3. Key Performance Lndicators
2.3.1. Component and System Level Heat Pump Performance and Flow Optimization
2.3.2. Building Level Thermal Comfort and Indoor Air Quality
2.3.3. Building Level Energy Performance
3. Results and Discussion
3.1. Component Level—Evaporator
3.1.1. CFD-Based Design Optimization
3.1.2. Fan Electric Power Consumption and Sound Emissions
3.2. System Level—Refrigerant Cycle
3.2.1. Refrigerant Cycle Characterisation and Optimization
- (a)
- No recirculation and no additional ambient air;
- (b)
- Recirculation air, no additional ambient air;
- (c)
- Recirculation and additional ambient air;
- (d)
- Recirculation and only ambient air.
3.2.2. Performance Maps for Building and System Simulation
3.3. Building-Level—Dynamic Building and System Simulations
3.3.1. Thermal Comfort and Indoor Air Quality
3.3.2. Comparison of System Performance
3.4. Façade-Integration and Mock-Ups
3.4.1. Mock-Up of Supply-Air Heat Pump with Recirculation of Secondary Air
3.4.2. Mock-Up of a Façade Integrated HP Outdoor Unit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
E | Energy/[KJ] |
h | Specific enthalpy [kJ/kg] |
Lw,p | Sound pressure level/dB(A) |
P | Pressure/[Pa] |
Q | Heat/[J] |
W | Work/[J] |
Pel | Electrical power/[W] |
Heat flux/[W] | |
T | Temperature/[K] |
v | Velocity/[m/s] |
η | Effectiveness/[-] |
ϑ | Temperature/[°C] |
Relative humidity/[%] | |
σ | Standard deviation |
ω | Humidity ratio/[kg/kg] |
Abbreviations
BA | Bathroom |
CFD | Computational Fluid Dynamics |
CH | Child room |
COP | Coefficient of performance |
DB | Dry bulb |
DESUP | Desuperheater |
DHW | Domestic hot water |
ED | Energy demand |
EE | Enthalpy exchanger |
EER | Energy efficiency ratio |
ERV | Energy recovery ventilation |
EEV | Electronic expansion valve |
EXH | Exhaust air |
EXT | Extract air |
H | Enthalpy |
HD | Heating demand |
HE | Heat exchanger |
HL | Heating load |
HG | Hot gas |
HP | Heat pump |
HRV | Heat recovery ventilation |
HVAC | Heating ventilation and air conditioning |
IAQ | Indoor air quality |
INF | Infiltration air |
KI | Kitchen |
KPI | Key Performance Indicator |
LCA | Life cycle analysis |
LCC | Life cycle cost |
LI | Living room |
MVHR | Mechanical ventilation with heat recovery |
NTU | Number of transfer units |
op | Operative |
PFTHE | Plate-fin-tube heat exchanger |
PH | Passive House |
PostH | Post-heater |
PP | Pinch point |
PrH | Pre-heater |
REC | Recirculation air |
SC | Space Cooling |
SCOP | Seasonal coefficient of performance |
SEC | Secondary air |
SEER | Seasonal energy efficiency ratio |
SH | Space heating |
SL | Sleeping room |
SFP | Specific fan power |
SPF | Seasonal performance factor |
SUP | Supply air |
SYS | System |
T | Temperature |
TC | Thermal comfort |
tot | Total |
TP | Two phase |
References
- European Commission. Clean Energy for All Europeans; Publications Office of EU: Luxembourg, 2019; p. 24. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. European Commission Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, 156, 75–91. [Google Scholar]
- Hirvonen, J.; Jokisalo, J.; Heljo, J.; Kosonen, R. Towards the EU emission targets of 2050: Cost-effective emission reduction in finnish detached houses. Energies 2019, 12, 4395. [Google Scholar] [CrossRef] [Green Version]
- Henning, H.-M.; Palzer, A. Energiesystem Deutschland 2050; Fraunhofer-Institut für Solare Energiesysteme ISE: Freiburg im Breisgau, Germany, 2013; 46p. [Google Scholar]
- Ochs, F.; Magni, M.; Dermentzis, G. Integration of heat pumps in buildings and district heating systems—Evaluation on a building and energy system level. Energies 2022, 15, 3889. [Google Scholar] [CrossRef]
- Ochs, F.; Siegele, D.; Jähnig, D.; Rohringer, C.; Calabrese, T.; Pfluger, R.; Fink, C. Sanierung von Mehrfamilienhäusern mit kleinen Wohnungen—Kostengünstige Technische Lösungsansätze für Lüftung, Heizung und Warmwasser; BMK: Vienna, Austria, 2020. [Google Scholar]
- Ruffino, E.; Piga, B.; Casasso, A.; Sethi, R. Heat pumps, wood biomass and fossil fuel solutions in the renovation of buildings: A techno-economic analysis applied to Piedmont region (NW Italy). Energies 2022, 15, 2375. [Google Scholar] [CrossRef]
- Rojas, G.; Pfluger, R.; Feist, W. Recommendable supply air rates for residential housing—A simulation study considering CO2 concentration, relative humidity, TVOC emissions and mould risk. In Proceedings of the 36th AIVC Conference “Effective Ventilation in High Performance Buildings”, Madrid, Spain, 23–24 September 2015; pp. 937–948. [Google Scholar]
- Fracastoro, G.V.; Serraino, M. Energy analyses of buildings equipped with exhaust air heat pumps (EAHP). Energy Build. 2010, 42, 1283–1289. [Google Scholar] [CrossRef]
- Fucci, F.; Perone, C.; La Fianza, G.; Brunetti, L.; Giametta, F.; Catalano, P. Study of a prototype of an advanced mechanical ventilation system with heat recovery integrated by heat pump. Energy Build. 2016, 133, 111–121. [Google Scholar] [CrossRef]
- Siegele, D.; Ochs, F.; Feist, W. Novel speed-controlled exhaust-air to supply-air heat pump combined with a ventilation system. Appl. Therm. Eng. 2019, 162, 114230. [Google Scholar] [CrossRef]
- Siegele, D.; Ochs, F. Effectiveness of a membrane enthalpy heat exchanger. Appl. Therm. Eng. 2019, 160, 114005. [Google Scholar] [CrossRef]
- Ochs, F.; Pfluger, R.; Dermentzis, G.; Siegele, D. Energy efficient renovation with decentral compact heat pumps. In Proceedings of the 12th IEA Heat Pump Conference, Rotterdam, The Netherlands, 15–18 May 2017. [Google Scholar]
- Ochs, F.; Hauer, M.; Bianchi Janetti, M.; Siegele, D. Energy performance of membrane energy recovery ventilation in combination with an exhaust air heat pump. Build. Simul. Conf. Proc. 2017, 3, 1263–1272. [Google Scholar] [CrossRef]
- Dermentzis, G.; Ochs, F.; Siegele, D.; Feist, W. A façade integrated micro-heat pump—Energy performance simulations. In Proceedings of the 5th German-Austrian IBPSA Conference: RWTH Aachen University, Aachen, Germany, 22–24 September 2014; pp. 344–351. [Google Scholar]
- Dermentzis, G.; Ochs, F.; Feist, W. A micro-heat pump combined with mechanical ventilation including heat recovery—Simulation and in situ monitoring. In Proceedings of the 12th IEA Heat Pump Conference, Rotterdam, The Netherlands, 15–18 May 2017. [Google Scholar]
- Ochs, F.; Siegele, D.; Dermentzis, G.; Feist, W. Prefabricated timber frame façade with integrated active components for minimal invasive renovations. Energy Procedia 2015, 78, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.; Dermentzis, G.; Myhren, J.A.; Bales, C.; Ochs, F.; Holmberg, S.; Feist, W. Energy performance comparison of three innovative HVAC systems for renovation through dynamic simulation. Energy Build. 2014, 82, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Dermentzis, G.; Ochs, F.; Siegele, D.; Feist, W. Renovation with an innovative compact heating and ventilation system integrated into the façade—An in-situ monitoring case study. Energy Build. 2018, 165, 451–463. [Google Scholar] [CrossRef]
- Gustafsson, M.; Dipasquale, C.; Poppi, S.; Bellini, A.; Fedrizzi, R.; Bales, C.; Ochs, F.; Sié, M.; Holmberg, S. Economic and environmental analysis of energy renovation packages for European office buildings. Energy Build. 2017, 148, 155–165. [Google Scholar] [CrossRef]
- Dipasquale, C.; Fedrizzi, R.; Bellini, A.; Gustafsson, M.; Ochs, F.; Bales, C. Database of energy, environmental and economic indicators of renovation packages for European residential buildings. Energy Build. 2019, 203, 109427. [Google Scholar] [CrossRef]
- Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing building retrofits: Methodology and state-of-the-art. Energy Build. 2012, 55, 889–902. [Google Scholar] [CrossRef]
- Deb, C.; Schlueter, A. Review of data-driven energy modelling techniques for building retrofit. Renew. Sustain. Energy Rev. 2021, 144, 110990. [Google Scholar] [CrossRef]
- Ochs, F.; Magni, M.; Venturi, E.; Tosatto, A.; Streicher, W. Cost-optimal nZEB HVAC configurations with onsite storage. E3S Web Conf. 2021, 246, 07001. [Google Scholar] [CrossRef]
- Psimopoulos, E.; Bee, E.; Widén, J.; Bales, C. Techno-economic analysis of control algorithms for an exhaust air heat pump system for detached houses coupled to a photovoltaic system. Appl. Energy 2019, 249, 355–367. [Google Scholar] [CrossRef]
- Feist, W.; Schnieders, J.; Dorer, V.; Haas, A. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept. Energy Build. 2005, 37, 1186–1203. [Google Scholar] [CrossRef]
- Georges, L.; Berner, M.; Mathisen, H.M. Air heating of passive houses in cold climates: Investigation using detailed dynamic simulations. Build. Environ. 2014, 74, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ochs, F.; Calabrese, T.; Siegele, D.; Dermentzis, G. Prefabricated modular façade elements for refurbishment with integrated heat pumps/heating with facade integrated heat pumps—Results of the Austrian FFG project “SaLüH!”. In Proceedings of the 14th Conference on Advanced Building Skins, Bern, Switzerland, 28–29 October 2019. [Google Scholar]
- Calabrese, T.; Ochs, F.; Siegele, D.; Dermentzis, G. Compact ventilation and heat pump with recirculation air for renovation of small apartments. E3S Web Conf. 2019, 111, 01011. [Google Scholar] [CrossRef]
- Thalfeldt, M.; Kurnitski, J.; Latõšov, E. Exhaust air heat pump connection schemes and balanced heat recovery ventilation effect on district heat energy use and return temperature. Appl. Therm. Eng. 2018, 128, 402–414. [Google Scholar] [CrossRef]
- Shirani, A.; Merzkirch, A.; Roesler, J.; Leyer, S.; Scholzen, F.; Maas, S. Experimental and analytical evaluation of exhaust air heat pumps in ventilation-based heating systems. J. Build. Eng. 2021, 44, 102638. [Google Scholar] [CrossRef]
- Vukits, M.; Fulterer, A.M.; Ochs, F.; Jähnig, D.; Wegener, A.; Siegele, D.; Sibille, E.; Pfluger, R.; Sief, A. Bericht zum Stand des Wissens Lüftung, Wärmepumpen und Kompaktgeräte—Projekt SaLüH; BMK: Vienna, Austria, 2018. [Google Scholar]
- Ala, G.; Orioli, A.; Di Gangi, A. Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy. Energy 2019, 173, 59–74. [Google Scholar] [CrossRef]
- Aste, N.; Adhikari, R.; Del Pero, C.; Leonforte, F. Multi-functional integrated system for energy retrofit of existing buildings: A solution towards nZEB standards. Energy Procedia 2017, 105, 2811–2817. [Google Scholar] [CrossRef]
- Monteleone, W.; Ochs, F.; Drexel, C.; Rothbacher, M. Modular split-type heat pump with compact and silent façade-integrated outdoor unit. E3S Web Conf. 2021, 246, 06008. [Google Scholar] [CrossRef]
- Zelenský, P.; Barták, M.; Zavøel, V.; Zmrhal, V.; Krupa, R. Numerical analysis of air flow in a modular fan unit using CFD simulation. E3S Web Conf. 2019, 111, 01008. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Yang, C.; Sun, Z.; Lu, Y.-M.; Chang, M.-M.; Shao, L.-L.; Zhang, C.-L. A novel packaged outdoor air dehumidifier with exhaust air heat pump—Experiment and simulation. Appl. Therm. Eng. 2020, 181, 115986. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Bashir, M.H.; Khan, A.R.; Ahmad, K.N.; Khan, S. CFD applications in various heat exchangers design: A review. Appl. Therm. Eng. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Zottl, A. GreenHP: Next Generation Heat Pump for Retrofitting Buildings. In Proceedings of the REHVA Annual Conference 2015 “Advanced HVAC and Natural Gas Technologies”, Riga, Latvia, 6–9 May 2015; pp. 1–40. [Google Scholar]
- Hesselgreaves, J.E.; Law, R.; Reay, D.A. Compact Heat Exchangers; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Abeykoon, C. Compact heat exchangers—Design and optimization with CFD. Int. J. Heat Mass Transf. 2019, 146, 118766. [Google Scholar] [CrossRef]
- Wen, J.; Li, Y. Study of flow distribution and its improvement on the header of plate-fin heat exchanger. Cryogenics 2004, 44, 823–831. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, X.; Li, X.; Wang, Z.; Xu, W.; Shao, S.; Xu, C.; Yang, Q.; Li, H.; Zhao, W. On-off cycling model featured with pattern recognition of air-to-water heat pumps. Appl. Therm. Eng. 2021, 196, 117317. [Google Scholar] [CrossRef]
- Correa, F.; Cuevas, C. Air-water heat pump modelling for residential heating and domestic hot water in Chile. Appl. Therm. Eng. 2018, 143, 594–606. [Google Scholar] [CrossRef]
- Szreder, M.; Miara, M. Effect of heat capacity modulation of heat pump to meet variable hot water demand. Appl. Therm. Eng. 2019, 165, 114591. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeon, Y.; Chung, H.J.; Cho, W.; Kim, Y. Simulation-based optimization of heating and cooling seasonal performances of an air-to-air heat pump considering operating and design parameters using genetic algorithm. Appl. Therm. Eng. 2018, 144, 362–370. [Google Scholar] [CrossRef]
- Passivhaus Institut Passipedia—The Passive House Resource. Available online: https://passipedia.org/certification/enerphit (accessed on 10 December 2021).
- Shah, R.K.; Sekulic, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 9780470172605. [Google Scholar]
- Ochs, F.; Calabrese, T.; Siegele, D.; Dermentzis, G. Compact exhaust air/supply air heat pump with recirculation and energy recovery in renovated multi-storey buildings. In Proceedings of the 25th IIR International Congress of Refrigeration, Montreal, QC, Canada, 24–30 August 2019. [Google Scholar]
- Solar-Institut Juelich FH Aachen CARNOT Toolbox. 2018. Available online: https://www.fh-aachen.de/forschung/solar-institut-juelich/carnot (accessed on 19 April 2022).
- Leonardi, E.; Siegele, D. carnotUIBK Toolbox for MATLAB Simulink. Available online: https://www.uibk.ac.at/bauphysik/forschung/carnotuibk/index.html.en (accessed on 20 April 2022).
- ÖNORM EN ISO 7730; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Austrian Standards: Vienna, Austria, 2006.
- Rojas-Kopeinig, G.; Spörk-Dür, M.; Venus, D.; Greml, A.; Krissmer, L.; Pfluger, R. Lüften und Heizen in Passivhäusern in Österreich—Variantenvergleich auf Basis von Behaglichkeit und Nachhaltigkeit; BMVIT: Vienna, Austria, 2015. [Google Scholar]
- Siegele, D.; Ochs, F.; Feist, W. Modelling and simulation of façade integrated active components with Matlab/Simulink. In Proceedings of the 5th German-Austrian IBPSA Conference: RWTH Aachen University, Aachen, Germany, 22–24 September 2014; pp. 198–205. [Google Scholar]
- Norsonic Nor145 Sound Level Meter. Available online: https://web2.norsonic.com/product_single/sound-level-meter-nor145/ (accessed on 26 May 2022).
- ISO 9614-1:1993; Determination of Sound Power Levels of Noise Sources Using Sound Intensity—Part 1: Measurement at Discrete Points. ISO: Geneva, Switzerland, 1993.
- ISO 9614-2:1996; Determination of Sound Power Levels of Noise Sources Using Sound Intensity—Part 2: Measurement by Scanning. ISO: Geneva, Switzerland, 1996.
- Siegele, D.; Leonardi, E.; Ochs, F. A new MATLAB simulink Toolbox for dynamic building simulation with B.I.M. and hardware in the loop compatibility. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019. [Google Scholar] [CrossRef]
Type of BC | Value | |
---|---|---|
Radial fans | Inlet | Total pressure = 0 Pa |
Outlet | Mass flow rate = 0.1152 kg/s | |
Axial fans | Inlet | Static pressure = 0 Pa |
Outlet | Average static pressure = 0 Pa |
Variant number | Geometry | Type of Fan | Position of the Fans |
---|---|---|---|
1 | Square | 4 axial | Suction side |
2.1 | Rectangular | 4 axial | Suction side |
2.2 | Rectangular | 4 axial | Pressure side |
3 | Rectangular | 1 radial | Suction side |
4 | Rectangular | 1 radial | Suction side |
Variant Number | Standard Deviation [%] | Maximum Velocity at the Evaporator [m/s] | Minimum Velocity at the Evaporator [m/s] |
---|---|---|---|
1 | 56.3 | 1.1 | −0.7 |
2.1 | 7.1 | 1.1 | −0.04 |
2.2 | 23.9 | 1.9 | 0.06 |
3 | 16.7 | 2.0 | 0.07 |
4 | 13.6 | 2.0 | −0.3 |
Split HP with Electric Radiator (Room-Wise) | Supply Air HP ** | Supply Air HP with Secondary Air Recirculation ** | |
---|---|---|---|
HD/[kWh/(m2 a)] | 29.7 | 30.5 | 23.8 |
HL/[W/m2] | 17.2 | 17.3 | 14.8 |
ED/[kWh/(m2 a)] | 27.1/26.3/25.9 * | 14.8 | 12.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochs, F.; Monteleone, W.; Dermentzis, G.; Siegele, D.; Speer, C. Compact Decentral Façade-Integrated Air-to-Air Heat Pumps for Serial Renovation of Multi-Apartment Buildings. Energies 2022, 15, 4679. https://doi.org/10.3390/en15134679
Ochs F, Monteleone W, Dermentzis G, Siegele D, Speer C. Compact Decentral Façade-Integrated Air-to-Air Heat Pumps for Serial Renovation of Multi-Apartment Buildings. Energies. 2022; 15(13):4679. https://doi.org/10.3390/en15134679
Chicago/Turabian StyleOchs, Fabian, William Monteleone, Georgios Dermentzis, Dietmar Siegele, and Christoph Speer. 2022. "Compact Decentral Façade-Integrated Air-to-Air Heat Pumps for Serial Renovation of Multi-Apartment Buildings" Energies 15, no. 13: 4679. https://doi.org/10.3390/en15134679
APA StyleOchs, F., Monteleone, W., Dermentzis, G., Siegele, D., & Speer, C. (2022). Compact Decentral Façade-Integrated Air-to-Air Heat Pumps for Serial Renovation of Multi-Apartment Buildings. Energies, 15(13), 4679. https://doi.org/10.3390/en15134679