A Novel Tripod Methodology of Scrutinizing Two-Phase Fluid Snap-Off in Low Permeability Formations from the Microscopic Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micromodel Characterization
2.2. Equipment Set-Up
2.3. Meshing Grid
2.4. Numerical Simulations
3. Results and Discussion
3.1. Axisymmetric Pore Throat
3.2. Continuously Tapering Pore Throat
3.2.1. Experimental Result for Continuously Tapering Pore Throat
3.2.2. Bubble Formation under the Surface-Dominate Condition
3.2.3. Numerical Simulation Result for Continuously Tapering Pore Throat
3.2.4. Two-Phase Dynamic Fluid Flow: Beresnev and Deng Breakup Criterion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Singh, K.; Menke, H.; Andrew, M.; Lin, Q.; Rau, C.; Blunt, M.J.; Bijeljic, B. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 2017, 7, 5192. [Google Scholar] [CrossRef] [PubMed]
- Jurinjak Tušek, A.; ŠAlić, A.; Valinger, D.; Jurina, T.; Benković, M.; Kljusurić, J.G.; Zelić, B. The power of microsystem technology in the food industry–Going small makes it better. Innov. Food Sci. Emerg. Technol. 2021, 68, 102613. [Google Scholar] [CrossRef]
- Yao, C.; Zhao, Y.; Ma, H.; Liu, Y.; Zhao, Q.; Chen, G. Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models. Chem. Eng. Sci. 2021, 229, 116017. [Google Scholar] [CrossRef]
- Cense, A.W.; Berg, S. The Viscous-Capillary Paradox in 2-Phase Flow in Porous Media. SCA 2009-13. In Proceedings of the International Symposium of the Society of Core Analysts, Noordwijk, The Netherlands, 27–30 September 2009. [Google Scholar]
- Rostami, P.; Sharifi, M.; Aminshahidy, B.; Fahimpour, J. The effect of nanoparticles on wettability alteration for enhanced oil recovery: Micromodel experimental studies and CFD simulation. Pet. Sci. 2019, 16, 859–873. [Google Scholar] [CrossRef] [Green Version]
- Kovscek, A.; Radke, C. Gas bubble snap-off under pressure-driven flow in constricted noncircular capillaries. Colloids Surf. A Physicochem. Eng. Asp. 1996, 117, 55–76. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Kang, Y.; Xi, Z.; Jia, N.; You, L.; Luo, P. Real-time visualization and investigation of dynamic gas snap-off mechanisms in 2-D micro channels. Fuel 2020, 279, 118232. [Google Scholar] [CrossRef]
- Roof, J. Snap-off of oil droplets in water-wet pores. Soc. Pet. Eng. J. 1970, 10, 85–90. [Google Scholar] [CrossRef]
- Beresnev, I.A.; Deng, W. Theory of breakup of core fluids surrounded by a wetting annulus in sinusoidally constricted capillary channels. Phys. Fluids 2010, 22, 012105. [Google Scholar] [CrossRef]
- Deng, W.; Balhoff, M.; Cardenas, M.B. Influence of dynamic factors on nonwetting fluid snap-off in pores. Water Resour. Res. 2015, 51, 9182–9189. [Google Scholar] [CrossRef]
- Quevedo Tiznado, Q.A.; Fuentes, C.; González-Sosa, E.; Chávez, C. Snap-off criteria for dynamic flow conditions in constricted circular capillaries. J. Appl. Fluid Mech. 2018, 11, 447–457. [Google Scholar] [CrossRef]
- Bai, X. Real-time Visualization, Numerical Simulation and Mathematical Calculation of Two-Phase Fluid Flow from the Microscopic Perspective. Master’s Thesis, University of Regina, Regina, SK, Canada, December 2021. [Google Scholar]
- Samaniuk, J.R.; Vermant, J. Micro and macrorheology at fluid–fluid interfaces. Soft Matter 2014, 10, 7023–7033. [Google Scholar] [CrossRef] [PubMed]
- Chinnov, E.; Ron’shin, F.; Kabov, O. Two-phase flow patterns in short horizontal rectangular microchannels. Int. J. Multiph. Flow 2016, 80, 57–68. [Google Scholar] [CrossRef]
- Eringen, A. Simple microfluids. Int. J. Eng. Sci. 1964, 2, 205–217. [Google Scholar] [CrossRef]
- Hui, L.S.S.N. Application of Fluid Mechanics Simulation Software ANSYS Fluent in Engineering (Chinese Edition); Science Press: Beijing, China, 2019. [Google Scholar]
- Condiff, D.W.; Dahler, J.S. Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 1964, 7, 842. [Google Scholar] [CrossRef]
- Eringen, A. Theory of micropolar fluids. Indiana Univ. Math. J. 1966, 16, 1–18. [Google Scholar] [CrossRef]
- Ariman, T. Couple stresses in fluids. Phys. Fluids 1967, 10, 2497. [Google Scholar] [CrossRef]
- White, F. Fluid Mechanics, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2015; pp. 221–269. [Google Scholar]
- Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Malgarinos, I.; Nikolopoulos, N.; Marengo, M.; Antonini, C.; Gavaises, M. VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model. Adv. Colloid Interface Sci. 2014, 212, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Extrand, C.W.; Kumagai, Y. Liquid drops on an inclined plane: The relation between contact angles, drop shape, and retentive force. J. Colloid Interface Sci. 1995, 170, 515–521. [Google Scholar] [CrossRef]
- Stokes, V.K. Couple stresses in fluids. Phys. Fluids 1966, 9, 1709. [Google Scholar] [CrossRef]
- Engineering ToolBox. Nitrogen—Dynamic and Kinematic Viscosity. Available online: https://www.engineeringtoolbox.com/nitrogen-N2-dynamic-kinematic-viscosity-temperature-pressure-d_2067.html (accessed on 15 November 2021).
- Engineering ToolBox. Carbon Dioxide—Dynamic and Kinematic Viscosity. Available online: https://www.engineeringtoolbox.com/carbon-dioxide-dynamic-kinematic-viscosity-temperature-pressure-d_2074.html (accessed on 15 November 2021).
- Chow, Y.F.; Maitland, G.C.; Trusler, J.M. Interfacial tensions of (H2O + H2) and (H2O + CO2 + H2) systems at temperatures of (298–448) K and pressures up to 45 MPa. Fluid Phase Equilib. 2018, 475, 37–44. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion-Implications to CO2 geological storage. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Chakraborty, S. Surface-tension-driven flow. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: New York, NY, USA, 2015; pp. 1956–1969. [Google Scholar]
- Sun, Z.; Santamarina, J.C. Haines jumps: Pore scale mechanisms. Phys. Rev. E 2019, 100, 023115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, S.; Ott, H.; Klapp, S.A.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Enzmann, F.; Schwarz, J.O.; et al. Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA 2013, 110, 3755–3759. [Google Scholar] [CrossRef] [Green Version]
Factors | Values | Factors | Values |
---|---|---|---|
Rgf,1 (μm) | 14.12 | ᾶ1= (RT,f − Rgf,1)/(l/2) | 0.1016 |
Rgf,2 (μm) | 10.02 | ᾶ2= (RT,f − Rgf,2)/(l/2) | 0.1288 |
Rgf,3 (μm) | 6.33 | ᾶ3= (RT,f − Rgf,3)/(l/2) | 0.1536 |
RT,f (μm) | 29.36 | μ1= μN2 (cp) | 0.01767 |
Linlet/outlet (μm) | 980 | μ1= μCO2 (cp) | 0.01478 |
l (μm) | 300 | μ2= μwater (cp) | 0.8900 |
a1= Rgf,1/RT,f | 0.4808 | Wall λ1(x) | 22.535 |
a2= Rgf,2/RT,f | 0.3420 | Wall λ2(x) | 20.711 |
a3= Rgf,3/RT,f | 0.2154 | Wall λ3(x) | 19.048 |
Axisymmetric Pore Throat | Continuously Tapering Pore Throat | |
---|---|---|
Inlet/Outlet Divisions | 30 | 15 |
Enter/Exit Channel | 200 | 150 |
Transition Curve | 10 | 8; 7; 5 |
Pore Throat | 30 | 15; 12; 10 |
Total elements | 18,993 | 18,103 |
With Nitrogen Gas | With Carbon Dioxide Gas | |||||
---|---|---|---|---|---|---|
Liquid Injection Rate (mL/min) | Measured Flow Velocity (μm/s) | Corresponding Capillary Number, NCa | θdyn (°C) | Measured Flow Velocity (μm/s) | Corresponding Capillary Number, NCa | θdyn (°C) |
0.0001 | 687.2 | 8.49 × 10−6 | 2.33 | 942.2 | 1.16 × 10−5 | 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Tian, J.; Jia, N.; Shirif, E. A Novel Tripod Methodology of Scrutinizing Two-Phase Fluid Snap-Off in Low Permeability Formations from the Microscopic Perspective. Energies 2022, 15, 6141. https://doi.org/10.3390/en15176141
Bai X, Tian J, Jia N, Shirif E. A Novel Tripod Methodology of Scrutinizing Two-Phase Fluid Snap-Off in Low Permeability Formations from the Microscopic Perspective. Energies. 2022; 15(17):6141. https://doi.org/10.3390/en15176141
Chicago/Turabian StyleBai, Xue, Jian Tian, Na Jia, and Ezeddin Shirif. 2022. "A Novel Tripod Methodology of Scrutinizing Two-Phase Fluid Snap-Off in Low Permeability Formations from the Microscopic Perspective" Energies 15, no. 17: 6141. https://doi.org/10.3390/en15176141
APA StyleBai, X., Tian, J., Jia, N., & Shirif, E. (2022). A Novel Tripod Methodology of Scrutinizing Two-Phase Fluid Snap-Off in Low Permeability Formations from the Microscopic Perspective. Energies, 15(17), 6141. https://doi.org/10.3390/en15176141