Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature
Abstract
:1. Introduction
2. Method
2.1. System Description
2.2. Thermodynamic Model
2.3. Exergy Analysis
2.4. Working Fluid Selection
2.5. Study Cases
3. Results and Discussion
3.1. Optimal Evaporation Temperature
3.2. Net Power Output
3.3. Exergy Analyses
3.3.1. Geothermal Exergy Utilization Efficiency
3.3.2. Geothermal Heating Exergy Efficiency
3.3.3. Cycle Internal Exergy Efficiency
3.3.4. Plant Exergy Efficiency
4. Conclusions
- The optimal evaporation temperature of an ORC with R1224yd(Z) is higher than that with R1336mzz(Z), R1233zd(E), R601a and R601. As the allowed reinjection temperature (ARIT) increases, the evaporation temperature should increase for a better temperature match with the geothermal brine. The optimal evaporation temperatures for RORCs are lower than those for ORCs for a brine inlet temperature (BIT) less than 120 °C and an ARIT higher than 70 °C.
- The maximum turbine work power of an ORC is generated by R1224yd(Z), followed by R1336mzz(Z) and R1233zd(E) for the same geothermal source and the reinjection temperature limit. However, the pumps in an ORC with 1224yd(Z) consumed more parasitic power than the other four fluids due to the higher mass flow rate. An ORC with R1336mzz(Z) generates 1–3% more net power than that with R1233zd(E), R601a and R601 for BITs above 120 °C due to the higher geothermal exergy utilization efficiency and the lower exergy losses in the evaporator and the preheater.
- Compared to ORC, RORC has a higher preheater inlet temperature, which results in a higher geothermal heating exergy efficiency for a BIT lower than 120 °C and generates about 1% more net power. The RORC using R1336mzz(Z) produces 2.6% more net power than an ORC for a brine inlet temperature of 100 °C and an allowed reinjection temperature of 75 °C, while only 1% more net power for a brine inlet temperature of 130 °C.
- As the allowed reinjection temperature increases, the geothermal exergy utilization efficiency and the exergy loss during the working fluid heat absorption decrease, especially for lower BITs. As the allowed reinjection temperature increases from 70 °C to 75 °C, the plant exergy efficiencies of ORCs decrease by less than 1% for BITs above 120 °C and decrease by 6–8% for a BIT of 100 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
exergy (kW) | |
g | gravitational acceleration (m·s−2) |
h | specific enthalpy (kJ·kg−1) |
H | pump head (m) |
exergy destruction (kW) | |
mass flow rate (kg·s−1) | |
p | pressure (MPa) |
heat flow (kW) | |
s | specific entropy (kJ·kg−1·K−1) |
t | temperature (°C) |
T | temperature (K) |
power (kW) | |
Abbreviations | |
ARIT | allowed reinjection temperature |
BIT | brine inlet temperature |
CP | cooling water circulating pump |
CON | condenser |
CP | cooling water circulating pump |
CW | cooling water |
E | evaporator |
FP | working fluid feed pump |
GEN | generator |
ORC | organic Rankine cycle |
FP | working fluid feed pump |
g | generator |
GH | geothermal heating |
GU | geothermal exergy utilization |
in | inlet |
m | mechanical |
net | net |
O | organic working fluid |
plant | geothermal power plant |
s | isentropic |
T | turbine |
R1224yd(Z) | cis-1-chloro-2,3,3,3-tetrafluoropropene |
R1233zd(E) | trans-1-chloro-3,3,3-trifluoropropene |
R1336mzz(Z) | trans-1,1,1,4,4,4-Hexafluoro-2-butene |
R601 | pentane |
R601a | isopentane |
Greek letters | |
η | efficiency |
Superscripts | |
ex | exergy |
References
- Wang, Y.Z.; Li, C.J.; Zhao, J.; Wu, B.Y.; Du, Y.P.; Zhang, J.; Zhu, Y.L. The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches. Renew. Sustain. Energy Rev. 2021, 138, 110557. [Google Scholar] [CrossRef]
- Franco, A.; Vaccaro, M. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review. Renew. Sustain. Energy Rev. 2014, 30, 987–1002. [Google Scholar] [CrossRef]
- Top 10 Geothermal Countries Power Generation. Available online: https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2021-installed-power-generation-capacity-mwe/ (accessed on 18 June 2022).
- Bertani, R. Geothermal power generation in the world 2010–2014 update report. Geothermics 2016, 60, 31–43. [Google Scholar] [CrossRef]
- Zhu, J.L.; Hu, K.Y.; Zhang, W.; Lu, X.L. A study on generating a map for selection of optimum power generation cycles used for Enhanced Geothermal Systems. Energy 2017, 133, 502–512. [Google Scholar] [CrossRef]
- Bett, A.K.; Jalilinasrabady, S. Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis. Energies 2021, 14, 6579. [Google Scholar] [CrossRef]
- Yang, X.F.; Xu, J.L.; Miao, Z.; Zou, J.H.; Qi, F.L. The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle. Appl. Energy 2016, 167, 17–33. [Google Scholar] [CrossRef]
- Lecompte, S.; Huisseune, H.; Broek, M.V.D.; Vanslambrouck, B.; Paepe, M.D. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 2015, 47, 448–461. [Google Scholar] [CrossRef]
- Zhai, H.X.; An, Q.S.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for organic Rankine cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805. [Google Scholar] [CrossRef]
- Astolfi, M.; Romano, M.C.; Bombarda, P.; Macchi, E. Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium-low temperature geothermal sources—Part A: Thermodynamic optimization. Energy 2014, 66, 423–434. [Google Scholar] [CrossRef]
- Manente, G.; Lazzaretto, A.; Bonamico, E. Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC). systems. Energy 2017, 123, 413–431. [Google Scholar] [CrossRef]
- Baccioli, A.; Antonelli, M.; Desideri, U. Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery. Appl. Energy 2017, 199, 69–87. [Google Scholar] [CrossRef]
- Meng, N.; Li, T.L.; Gao, X.; Liu, Q.H.; Li, X.L.; Gao, H.Y. Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock. Appl. Therm. Eng. 2022, 200, 117715. [Google Scholar] [CrossRef]
- Franco, A.; Villani, M. Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal fields. Geothermics 2009, 38, 379–391. [Google Scholar] [CrossRef]
- Quoilin, S.; Broek, M.V.D.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of organic Rankine cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef]
- Hu, S.; Yang, Z.; Li, J.; Duan, Y. A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design. Energies 2021, 14, 6492. [Google Scholar] [CrossRef]
- Basaran, A.; Ozgerer, L. Investigation of the effect of different refrigerants on performances of binary geothermal power plants. Energy Convers. Manag. 2013, 76, 483–498. [Google Scholar] [CrossRef]
- Méndez-Cruz, L.E.; Gutiérrez-Limón, M.Á.; Lugo-Méndez, H.; Lugo-Leyte, R.; Lopez-Arenas, T.; Sales-Cruz, M. Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids. Energies 2022, 15, 2588. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z.; Duan, Y.Y.; Yang, Z.; Liu, Q. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles. Appl. Energy 2018, 217, 409–421. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z.; Liu, Q.; Duan, Y.Y.; Yang, Z. Thermo-economic performance analyses and comparison of two turbine layouts for organic Rankine cycles with dual-pressure evaporation. Energy Convers. Manag. 2018, 164, 603–614. [Google Scholar] [CrossRef]
- Luo, X.L.; Huang, R.L.; Yang, Z.; Chen, J.Y.; Chen, Y. Performance investigation of a novel zeotropic organic Rankine cycle coupling liquid separation condensation and multi-pressure evaporation. Energy Convers. Manag. 2018, 161, 112–127. [Google Scholar] [CrossRef]
- Karimi, S.; Mansouri, S. A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations. Renew. Energy 2018, 115, 600–619. [Google Scholar] [CrossRef]
- Du, Y.; Yang, Y.; Hu, D.S.; Hao, M.T.; Wang, J.F.; Dai, Y.P. Off-design performance comparative analysis between basic and parallel dual-pressure organic Rankine cycles using radial inflow turbines. Appl. Therm. Eng. 2018, 138, 18–34. [Google Scholar] [CrossRef]
- Bina, S.M.; Jalilinasrabady, S.; Fujii, H. Thermo-economic evaluation of various bottoming ORCs for geothermal power plant, determination of optimum cycle for Sabalan power plant exhaust. Geothermics 2017, 70, 181–191. [Google Scholar] [CrossRef]
- Yari, M. Exergetic analysis of various types of geothermal power plants. Renew. Energy 2010, 35, 112–121. [Google Scholar] [CrossRef]
- Spadacini, C.; Xodo, L.G.; Quaia, M. Geothermal energy exploitation with Organic Rankine Cycle technologies. In Organic Rankine Cycle (ORC) Power Systems; Macchi, E., Astolfi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 473–525. [Google Scholar] [CrossRef]
- Macchi, E. Theoretical basis of the organic Rankine cycle. In Organic Rankine Cycle (ORC) Power Systems; Macchi, E., Astolfi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–24. [Google Scholar] [CrossRef]
- Eyerer, S.; Dawo, F.; Kaindl, J.; Wieland, C.; Spliethoff, H. Experimental investigation of modern ORC working fluids R1224yd (Z) and R1233zd (E) as replacements for R245fa. Appl. Energy 2019, 240, 946–963. [Google Scholar] [CrossRef]
- Welzl, M.; Heberle, F.; Weith, T.; Brüggemann, D. Experimental Evaluation of R1336mzz (Z) as Low GWP Replacement for R245fa in a Scroll Expander. In Proceedings of the 5th International Seminar on ORC Power Systems, Athens, Greece, 9–11 September 2019. [Google Scholar]
- Dawo, F.; Fleischmann, J.; Kaufmann, F.; Schifflechner, C.; Eyerer, S.; Wieland, C.; Spliethoff, H. R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact. Appl. Energy 2021, 288, 116661. [Google Scholar] [CrossRef]
- Longo, G.A.; Mancin, S.; Righetti, G.; Zilio, C.; Brown, J.S. Assessment of the low-GWP refrigerants R600a, R1234ze (Z) and R1233zd (E) for heat pump and organic Rankine cycle applications. Appl. Therm. Eng. 2020, 167, 114804. [Google Scholar] [CrossRef]
- Qiu, K.; Entchev, E. A micro-CHP system with organic Rankine cycle using R1223zd (E) and n-Pentane as working fluids. Energy 2022, 239, 121826. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, J.; Shi, J.; Chen, J.P. Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system. Energy 2020, 199, 117344. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Yuan, P.; Liu, J. Guidelines for Optimal Selection of Subcritical Low-Temperature Geothermal Organic Rankine Cycle ConFigureuration Considering Reinjection Temperature Limits. Energies 2018, 11, 2878. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-Refprop, Version 10.0; NIST: Gaithersburg, MD, USA, 2018.
- Kamila, Z.; Kaya, E.; Zarrouk, S.J. Reinjection in geothermal fields: An updated worldwide review 2020. Geothermics 2021, 89, 101970. [Google Scholar] [CrossRef]
- Liu, Q.; Duan, Y.Y.; Yang, Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy 2013, 63, 123–132. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Cao, M.; Wang, J.; Wu, Y.; Ma, C. Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander. Energies 2019, 12, 3197. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Q.; Duan, Y.Y. Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems. Geothermics 2018, 75, 249–258. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Xu, X.X.; Li, Q.B.; Wang, S.K.; Chen, X. Effects of superheat and internal heat exchanger on thermo-economic performance of organic Rankine cycle based on fluid type and heat sources. Energy 2018, 159, 482–495. [Google Scholar] [CrossRef]
Working Fluid | Tcr (°C) | pcr (MPa) | Safety Class | GWP100yrs |
---|---|---|---|---|
R1224yd(Z) | 155.54 | 3.337 | - | 1 |
R1233zd(E) | 165.6 | 3.572 | A1 | 1 |
R1336mzz(Z) | 171.35 | 2.903 | A1 | 2 |
R601a | 187.2 | 3.378 | A3 | ~20 |
R601 | 196.55 | 3.368 | A3 | ~20 |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Geothermal water flow rate | 50 | kg/s | |
Geothermal water pressure | p | 2 | MPa |
Evaporator pinch point temperature difference | 10 | °C | |
Cooling water inlet temperature | tC,in | 20 | °C |
Condenser pinch point temperature difference [39] | ΔtC | 5 | °C |
Condensation temperature | tC | 30 | °C |
Pinch point temperature difference in the recuperator [40] | Δtp | 5 | °C |
Turbine isentropic efficiency | 85 | % | |
Turbine mechanical efficiency | 98 | % | |
Generator efficiency | 98 | % | |
Working fluid pump isentropic efficiency [39] | 65 | % | |
Circulating pump head | H | 20 | m |
Circulating pump efficiency | 80 | % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Gao, C.; Li, C.; Sun, J.; Wang, C.; Liu, Q.; Zhao, J. Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature. Energies 2022, 15, 6230. https://doi.org/10.3390/en15176230
Zhao Y, Gao C, Li C, Sun J, Wang C, Liu Q, Zhao J. Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature. Energies. 2022; 15(17):6230. https://doi.org/10.3390/en15176230
Chicago/Turabian StyleZhao, Yuan, Chenghao Gao, Chengjun Li, Jie Sun, Chunyan Wang, Qiang Liu, and Jun Zhao. 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature" Energies 15, no. 17: 6230. https://doi.org/10.3390/en15176230
APA StyleZhao, Y., Gao, C., Li, C., Sun, J., Wang, C., Liu, Q., & Zhao, J. (2022). Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature. Energies, 15(17), 6230. https://doi.org/10.3390/en15176230