Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids
(This article belongs to the Section E: Electric Vehicles)
Abstract
:1. Introduction
1.1. Combining Architecture with Alternative Power Sources
1.2. Electromobility in Urban Conditions
2. Buildings under Research
2.1. A Nearly Zero-Energy Building (nZEB)—Wroniecka 23
2.2. Electric Vehicle—Skoda Citigo
- The vehicle’s range increases along with the increasing capacity of the high voltage battery;
- The vehicle’s range for different vehicles with the same battery capacity may vary even up to 50% or more, depending on the type of the vehicle and its drive.
3. Energy Analysis
3.1. Energy Production by the Building
3.1.1. Analysis of Insolation Time of the Roof—Research Method
3.1.2. Analysis of Visibility of Building Block’s Roof Surfaces, in Accordance with Requirements of Old Town Culture Park in Poznań
3.2. EV Energy Consumption
3.3. Methods of Charging Electric Vehicles
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatti, A.; Salam, Z.; Aziz, M.; Yee, K.; Ashique, R. Electric Vehicles Charging Using Photovoltaic: Status And Technological Review. Renew. Sustain. Energy Rev. 2016, 54, 34–47. [Google Scholar] [CrossRef]
- The European Council of Town Planners. The New Charter of Athens (Part A), Lisbon. 2003. Available online: https://patterns.architexturez.net/doc/az-cf-172768 (accessed on 16 December 2003).
- First International Congress of Architects and Technicians of Historic Monuments, The Athens Charter for the Restoration of Historic Monuments (Part III), Athens 1931. Available online: https://www.icomos.org/en/167-the-athens-charter-for-the-restoration-of-historic-monuments (accessed on 16 December 2003).
- International Council On Monuments And Sites (ICOMOS). International Charter for the Conservation and Restoration of Monuments and Sites (The Venice Charter). 1964. Available online: https://www.icomos.org/charters/venice_e.pdf (accessed on 16 December 2003).
- Economidou, M. Europe’s Buildings under the Microscope. A Country-by-Country Review of the Energy Performance of Buildings, Buildings Performance Institute Europe (BPIE). 2011. Available online: https://bpie.eu/wp-content/uploads/2015/10/HR_EU_B_under_microscope_study.pdf (accessed on 12 May 2022).
- Gremmelspacher, J.; Campamà Pizarro, R.; van Jaarsveld, M.; Davidsson, H.; Johansson, D. Historical Building Renovation and PV Optimisation Towards Netzeb In Sweden. Sol. Energy 2021, 223, 248–260. [Google Scholar] [CrossRef]
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J. Energy Efficiency and Thermal Comfort In Historic Buildings: A Review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- Lidelöw, S.; Örn, T.; Luciani, A.; Rizzo, A. Energy-Efficiency Measures For Heritage Buildings: A Literature Review. Sustain. Cities Soc. 2019, 45, 231–242. [Google Scholar] [CrossRef]
- Rosolski, S. New technical solutions in upgrading historic building to standard of nearly zero-energy building. Example of tenement house in poznań. Space FORM 2021, 2021, 333–352. [Google Scholar] [CrossRef]
- Rosolski, S. Kamienica przy ul. Wronieckiej 23, Poznań. In Renowacje i Zabytki; Renovations and Monuments, 2019; Volume 4, pp. 182–185. [Google Scholar]
- Rejestr Zabytków Województwa Wielkopolskiego. Available online: http://poznan.wuoz.gov.pl/sites/default/files/obrazki/wlk-rej7_0.pdf (accessed on 16 December 2003).
- Ustawa z dnia 23 lipca 2003 r. o Ochronie Zabytków i Opiece nad Zabytkami, Dziennik Ustaw z 2021 r., poz. 710 ze Zmianami. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20031621568/U/D20031568Lj.pdf (accessed on 15 May 2022).
- Kozak, M.; Lijewski, P.; Fuc, P. Exhaust Emissions from a City Bus Fuelled by Oxygenated Diesel Fuel. In SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Pielecha, I.; Szwajca, F. Cooperation of a PEM Fuel Cell and a Nimh Battery at Various States of Its Charge a FCHEV Drive. Eksploat. I Niezawodn. Maint. Reliab. 2021, 23, 468–475. [Google Scholar] [CrossRef]
- Nanaki, E.; Xydis, G.; Koroneos, C. Electric Vehicle Deployment in Urban Areas. Indoor Built Environ. 2016, 25, 1065–1074. [Google Scholar] [CrossRef]
- Macioszek, E. E-Mobility Infrastructure in the Górnośląsko-Zagłębiowska Metropolis, Poland, and Potential for Devel-opment. In Proceedings of the 5th World Congress on New Technologies, Lisbon, Portugal, 18–20 August 2019. [Google Scholar]
- Rottoli, M.; Dirnaichner, A.; Pietzcker, R.; Schreyer, F.; Luderer, G. Alternative Electrification Pathways for Light-Duty Vehicles in the European Transport Sector. Transp. Res. Part D Transp. Environ. 2021, 99, 103005. [Google Scholar] [CrossRef]
- Turoń, K.; Czech, P. The Concept of Rules and Recommendations for Riding Shared and Private E-Scooters in the Road Network in the Light of Global Problems. Adv. Intell. Syst. Comput. 2019, 275–284. [Google Scholar]
- Matyja, T.; Kubik, A.; Stanik, Z. Possibility to Use Professional Bicycle Computers for the Scientific Evaluation of Electric Bikes: Trajectory, Distance, and Slope Data. Energies 2022, 15, 758. [Google Scholar] [CrossRef]
- Hoarau, Q.; Perez, Y. Interactions Between Electric Mobility and Photovoltaic Generation: A Review. Renew. Sustain. Energy Rev. 2018, 94, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Higashitani, T.; Ikegami, T.; Uemichi, A.; Akisawa, A. Evaluation of Residential Power Supply by Photovoltaics and Electric Vehicles. Renew. Energy 2021, 178, 745–756. [Google Scholar] [CrossRef]
- Cumulative Installed Solar PV Capacity Worldwide from 2000 to 2020. Available online: https://www.statista.com/statistics/280220/global-cumulative-installed-solar-pv-capacity/ (accessed on 1 November 2021).
- The Global Electric Vehicle Market Overview in 2022: Statistics & Forecasts. Available online: https://www.virta.global/global-electric-vehicle-market (accessed on 1 November 2021).
- Mandating Less Tailpipe Pollution. Available online: https://www.greencitytimes.com/global-ice-vehicle-phase-out/ (accessed on 1 November 2021).
- Ericsson, E. Variability in Urban Driving Patterns. Transp. Res. Part D Transp. Environ. 2000, 5, 337–354. [Google Scholar] [CrossRef]
- Brundell-Freij, K.; Ericsson, E. Influence of Street Characteristics, Driver Category and Car Performance on Urban Driving Patterns. Transp. Res. Part D Transp. Environ. 2005, 10, 213–229. [Google Scholar] [CrossRef]
- Desreveaux, A.; Bouscayrol, A.; Castex, E.; Trigui, R.; Hittinger, E.; Sirbu, G. Annual Variation in Energy Consumption of an Electric Vehicle Used for Commuting. Energies 2020, 13, 4639. [Google Scholar] [CrossRef]
- Pielecha, J.; Skobiej, K.; Kurtyka, K. Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles In Real Driving Cycles. Energies 2020, 13, 6423. [Google Scholar] [CrossRef]
- Hao, X.; Wang, H.; Lin, Z.; Ouyang, M. Seasonal Effects on Electric Vehicle Energy Consumption and Driving Range: A Case Study On Personal, Taxi, And Ridesharing Vehicles. J. Clean. Prod. 2020, 249, 119403. [Google Scholar] [CrossRef]
- Pielecha, I.; Pielecha, J. Simulation Analysis of Electric Vehicles Energy Consumption In Driving Tests. Eksploat. I Niezawodn. Maint. Reliab. 2019, 22, 130–137. [Google Scholar] [CrossRef]
- Alghamdi, A. Potential For Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of A Villa In Jeddah. Energies 2019, 12, 4411. [Google Scholar] [CrossRef]
- City of Berlin Plans to Install Solar on All New Buildings. Available online: https://www.solarpowereurope.org/city-of-berlin-plans-to-install-solar-on-all-new-buildings/ (accessed on 1 November 2021).
- Odeh, S.; Nguyen, T. Assessment Method to Identify the Potential of Rooftop PV Systems in the Residential Districts. Energies 2021, 14, 4240. [Google Scholar] [CrossRef]
- Koc, A.; Anderson, P.; Chastain, J.; Post, C. Estimating Rooftop Areas of Poultry Houses Using UAV and Satellite Images. Drones 2020, 4, 76. [Google Scholar] [CrossRef]
- Alqahtani, N.; Balta-Ozkan, N. Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia. Energies 2021, 14, 3805. [Google Scholar] [CrossRef]
- Rosolski, S. Regeneracja struktury budynku zabytkowego. In Człowiek-Ekologia-Architektura. Tom 4. Regeneracja Architektury; Januchta-Szostak, A., Banach, M., Eds.; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 2017; pp. 101–113. [Google Scholar]
- Uchwała Nr LXII/1151/VII/2018 Rady Miasta Poznania z dnia 27 lutego 2018 r. Available online: https://bip.poznan.pl/bip/uchwaly/uchwala-nr-lxii-1151-vii-2018-z-dnia-2018-02-27,74215/ (accessed on 15 May 2022).
- Woszczyński, M.; Stankiewicz, K. Analiza efektywności energetycznej i założenia techniczne rozbudowy instalacji fotowoltaicznych na dachach obiektów przemysłowych. In Innowacyjne i Przyjazne dla Środowiska Techniki i Technologie Przeróbki Surowców Mineralnych. Bezpieczeństwo–Jakość–Efektywność; Prostański, D., Polnik, B., Eds.; KOMEKO 2021; Instytut Techniki Górniczej KOMAG: Gliwice, Poland, 2021; pp. 67–82. [Google Scholar]
- Chwieduk, B.; Jędrzejuk, H. Analiza energetyczna i ekonomiczna instalacji fotowoltaicznej w wybranym budynku jednorodzinnym. Rynek Energii 2015, 6, 74–80. [Google Scholar]
- Latała, H.; Kurpaska, H.S. Analiza teoretyczna uzysku energetycznego krzemowych ogniw fotowoltaicznych w warunkach solarnych małopolski. Inżynieria Rol. 2011, 15, 183–189. [Google Scholar]
- Sabat, M. Analiza Szeregów Czasowych Produkcji Energii Ze Źródeł Odnawialnych Pod Kątem Niezależności Energetycznej Wybranego Obszaru. Przegląd Elektrotechniczny 2017, 1, 13–17. [Google Scholar] [CrossRef]
- Turoń, K.; Kubik, A.; Łazarz Bogusław, B.; Czech, P.; Stanik, Z. Car-Sharing in the Context of Car Operation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 032027. [Google Scholar] [CrossRef]
- Electric Vehicle Wireless Charging. Available online: https://witricity.com/products/automotive/ (accessed on 13 October 2021).
- Technologie. Available online: https://www.skoda-auto.cz/ (accessed on 1 December 2021).
- Cieslik, W.; Szwajca, F.; Zawartowski, J.; Pietrzak, K.; Rosolski, S.; Szkarlat, K.; Rutkowski, M. Capabilities of Nearly Zero Energy Building (Nzeb) Electricity Generation To Charge Electric Vehicle (EV) Operating in Real Driving Conditions (RDC). Energies 2021, 14, 7591. [Google Scholar] [CrossRef]
- Electric Vehicle Database. Available online: https://ev-database.org/ (accessed on 20 October 2021).
- Ferri, C.; Ziar, H.; Nguyen, T.; van Lint, H.; Zeman, M.; Isabella, O. Mapping The Photovoltaic Potential of The Roads Including The Effect of Traffic. Renew. Energy 2022, 182, 427–442. [Google Scholar] [CrossRef]
- Deshmukh, S.; Pearce, J. Electric Vehicle Charging Potential From Retail Parking Lot Solar Photovoltaic Awnings. Renew. Energy 2021, 169, 608–617. [Google Scholar] [CrossRef]
- Clarke, J.A.; McGhee, R.; Svehla, K. Opportunity Mapping for Urban Scale Renewable Energy Generation. Renew. Energy 2020, 162, 779–787. [Google Scholar]
- Sharma, M.; Bhattacharya, J. Dependence of Spectral Factor on Angle of Incidence for Monocrystalline Silicon Based Photovoltaic Solar Panel. Renew. Energy 2022, 184, 820–829. [Google Scholar] [CrossRef]
- Li, P.; Gao, X.; Li, Z.; Zhou, X. Effect of The Temperature Difference Between Land and Lake on Photovoltaic Power Generation. Renew. Energy 2022, 185, 86–95. [Google Scholar] [CrossRef]
- Commision Regulation (EU) 2017/1154 of 7 June 2017 Amending Regulation (EU) 2017/1151 Supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information, Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008 and Directive 2007/46/EC of the European Parliament and of the Council as Regards Real-Driving Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). Belgium (Brussels). Official Journal of the European Communities, L 175/708 (7 July 2017). Available online: https://eur-lex.europa.eu/eli/reg/2017/1154/oj (accessed on 15 May 2022).
- Pielecha, J.; Skobiej, K. Evaluation of Ecological Extremes of Vehicles In Road Emission Tests. Arch. Transp. 2020, 56, 33–46. [Google Scholar] [CrossRef]
- Cieslik, W.; Szwajca, F.; Golimowski, W.; Berger, A. Experimental Analysis of Residential Photovoltaic (PV) And Electric Vehicle (EV) Systems In Terms of Annual Energy Utilization. Energies 2021, 14, 1085. [Google Scholar] [CrossRef]
- Pielecha, I.; Cieślik, W.; Szałek, A. Operation of Electric Hybrid Drive Systems In Varied Driving Conditions. Eksploat. I Niezawodn. Maint. Reliab. 2017, 20, 16–23. [Google Scholar] [CrossRef]
- Convenient On-Street Electric Vehicle Charging. Available online: https://www.urbanelectric.london (accessed on 1 December 2021).
- Zagrajek, K.; Paska, J.; Sosnowski, Ł.; Gobosz, K.; Wróblewski, K. Framework for the Introduction of Vehicle-To-Grid Technology into The Polish Electricity Market. Energies 2021, 14, 3673. [Google Scholar] [CrossRef]
- Narasipuram, R.P.; Mopidevi, S. A technological overview & design considerations for developing electric vehicle charging stations. J. Energy Storage 2021, 43, 103225. [Google Scholar] [CrossRef]
SEASON | Energy Consumption in Urban Conditions [kWh/100 km] | Charging Time Depending on Charging Method [min] | |||
---|---|---|---|---|---|
7.2 kW AC | 7.2 kW AC Wireless | 2.3 kW AC | 2.3 kW AC Wireless | ||
winter | 13.73 | 114 | 126 | 358 | 394 |
summer | 11.43 | 95 | 105 | 298 | 328 |
average | 12.58 | 105 | 115 | 328 | 361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieslik, W.; Szwajca, F.; Rosolski, S.; Rutkowski, M.; Pietrzak, K.; Wójtowicz, J. Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids. Energies 2022, 15, 6296. https://doi.org/10.3390/en15176296
Cieslik W, Szwajca F, Rosolski S, Rutkowski M, Pietrzak K, Wójtowicz J. Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids. Energies. 2022; 15(17):6296. https://doi.org/10.3390/en15176296
Chicago/Turabian StyleCieslik, Wojciech, Filip Szwajca, Sławomir Rosolski, Michał Rutkowski, Katarzyna Pietrzak, and Jakub Wójtowicz. 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids" Energies 15, no. 17: 6296. https://doi.org/10.3390/en15176296
APA StyleCieslik, W., Szwajca, F., Rosolski, S., Rutkowski, M., Pietrzak, K., & Wójtowicz, J. (2022). Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids. Energies, 15(17), 6296. https://doi.org/10.3390/en15176296