Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production
Abstract
:1. Introduction
2. Conventional Catalyst Development
2.1. Nickel-Containing Catalysts
2.2. Iron Containing Catalysts
2.3. Noble Metal Catalysts
2.4. Carbon Based Catalysts
Catalyst | Preparation | Pretreatment | Feed Rate * (mL/min) | Temp. (°C) | React. Time | Max. CH4 Conversion | H2 Productivity | Carbon Productivity | Carbon Morphology | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
200 mg 40% Ni/MgO | hydrothermal | 850 °C 1 h red. | 200 (33%/N2) | 600 | 4.5 h | 49% | 53% yield | [13] | ||
300 mg 10% Ni/Al2O3 | sol-gel | 650 °C 3 h red. | 70 (30%/N2) | 650 | 1 h | 46% | [14] | |||
140 mg 32% Ni/SBA-15 | electroless plating | 450 °C 4 min red. | 15 (50%/N2) | 575 | 750 min | 44% | [15] | |||
500 mg 40% Ni-10% Mo/CeO2 | coimpregnation | 700 °C 1 h red. | 50 (100% CH4) | 700 | 3 h | 73% yield | 537 wt% | MWCNT | [16] | |
10 mg Ni-Cu (7:3)/Al2O3 | coprecipitation | 800 °C 30 m red. | 25 (20%/N2) | 650 | 19 h | 68% | 133 wt% | CNT, CNF | [17] | |
2 mL 1% Ni-2% Co/Al2O3 | impregnation | 600 °C 6 h red. | 160 (6%/N2) | 600 | 5 h | 86% | 51% yield | 11 wt% | [18] | |
100 mg 50% Ni-CoCuZn/Al2O3 | coprecipitation | 750 °C 3 h red. | 42 L/g/h (50%/N2) | 700 | 80 h | 85% | 265 wt% | CNT | [19] | |
5g 60% Ni-5% Cu-5% Zn/Al2O3 | impregnation | 550 °C 5 h red. | 180 (25%/N2) | 750 | 180 min | >90% | CNT | [20] | ||
80 mg 15% Ni/POFA (SiO2) | combustion | no pretreatment | 60 (20%/N2) | 550 | 6 h | 87% | 27% yield | filament | [21] | |
10 g 25% Ni@G | coprecipitation | 300 °C 0.5 h in N2 | 150 (67%/Ar) | 900 | 10 h | 88% | 95 vol% H2 | 4.46 g/g Ni | G, graphite | [22] |
200 mg 10% Ni-1% Pd/CNT | solvothermal | 400 °C 4 h red. | 30 (30%/N2) | 600 | 6 h | 55% | 90% select. | CNT, CNF | [23] | |
600 mg iron ores | natural | 900 °C 1 h in CH4 | 20 (100% CH4) | 850 | 3 h | 56% | 70 vol% H2 | 1.63 g/g cat. | CNT, graphite | [24] |
200 mg stainless steel foam | commercial | 900 °C ox. + red. | 700 (43%/14% H2/N2) | 950 | <5% | 116 g/(g foam * h) | GRM, CNT | [25] | ||
500 mg 30% Fe@C | impregnation | 1000 °C in N2 | 100 (5%/N2) | 800 | 3 h | 96% | 0.39 g/g cat. | coke, graphite | [26] | |
1.1 mL Active Carbon (AC) | commercial | no pretreatment | 60 (50%/N2) | 1000 | 45 min | 37% | [27] | |||
200 mg 10% Co/BFA | impregnation | 700 °C 5 h calc. | 40 (100% CH4) | 700 | 330 min | 63% | 30% yield | whisker | [30] | |
500 mg 5% Co/CeO2-BFA | impregnation | 700 °C 3 h calc. | 20 (100% CH4) | 850 | 34 h | 71% | 45% yield | [31] | ||
25 mg 24% Co-6% Cu/C | coimpregnation | 850 °C 75 m red. | 700 (29%/14% H2/N2) | 750 | 11 h | 0.29 g/g cat. | CNT | [32] | ||
500 mg 40% Mo/MgO | impregnation | 700 °C 1 h red. | 60 (100% CH4) | 800 | 2 h | 68% | 68% yield | 180 wt% | MWCNT | [33] |
2.5. Other Catalysts
3. Reactors Used in Methane Pyrolysis
4. Molten Media Pyrolysis of Methane
5. Reaction Mechanism and Aspects of Industrialization
6. Summary, Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakenne, A.; Nuttall, W.; Kazantzis, N. Sankey-Diagram-based insights into the hydrogen economy of today. Int. J. Hydrogen Energy 2016, 41, 7744–7753. [Google Scholar] [CrossRef]
- Upham, D.C.; Agarwal, V.; Khechfe, A.; Snodgrass, Z.R.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 2017, 358, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hoekman, S.K. Production of CO2-Free Hydrogen From Methane Dissociation: A Review. Environ. Prog. Sustain. Energy 2014, 33, 213–219. [Google Scholar] [CrossRef]
- Dipu, A.L. Methane decomposition into COx-free hydrogen over a Ni based catalyst: An overview. Int. J. Energy Res. 2021, 45, 9858–9877. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Fidalgo, B.; Menéndez, J.Á. Carbon Materials as Catalysts for Decomposition and CO2 Reforming of Methane: A Review. Chin. J. Catal. 2011, 32, 207–216. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Wang, G. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catal. Today 2011, 162, 1–48. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Daud, W.M.A.W.; Abbas, -H.F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef]
- Qian, J.X.; Chen, T.W.; Enakonda, L.R.; Liu, D.B.; Mignani, G.; Basset, J.-M.; Zhou, L. Methane decomposition to produce COx-free hydrogen and nano-carbon over metal catalysts: A review. Int. J. Hydrogen Energy 2020, 45, 7981–8001. [Google Scholar] [CrossRef]
- Alves, L.; Pereira, V.; Lagarteira, T.; Mendes, A. Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements. Renew. Sustain. Energy Rev. 2021, 137, 110465. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis. Energies 2021, 14, 3107. [Google Scholar] [CrossRef]
- Muradov, N.Z.; Veziroglu, T.N. From hydrocarbon to hydrogen–carbon to hydrogen economy. Int. J. Hydrogen Energy 2005, 30, 225–237. [Google Scholar] [CrossRef]
- Dalenjan, M.B.; Rashidi, A.; Khorasheh, F.; Ardjmand, M. Effect of Ni ratio on mesoporous Ni/MgO nanocatalyst synthesized by one-step hydrothermal method for thermal catalytic decomposition of CH4 to H2. Int. J. Hydrogen Energy 2022, 47, 11539–11551. [Google Scholar] [CrossRef]
- Xu, M.; Lopez-Ruiz, J.A.; Kovarik, L.; Bowden, M.E.; Davidson, S.D.; Weber, R.S.; Wang, I.W.; Hu, J.; Dagle, R.A. Structure sensitivity and its effect on methane turnover and carbon co-product selectivity in thermocatalytic decomposition of methane over supported Ni catalysts. Appl. Catal. A Gen. 2021, 611, 117967. [Google Scholar] [CrossRef]
- Chen, Q.; Lua, A.C. Synthesis of electroless Ni catalyst supported on SBA-15 for hydrogen and carbon production by catalytic decomposition of methane. Int. J. Energy Res. 2021, 45, 2810–2823. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Awadallah, A.E.; Aboul-Enein, A.A.; Solyman, S.M.; Aboul-Gheit, N.A.K. Non-oxidative Decomposition of CH4 Over CeO2 and CeO2–SiO2 Supported Bimetallic Ni–Mo Catalysts. Catal. Lett. 2022, 152, 2789–2800. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, H.; Huang, M.; Wan, C.; Li, D.; Jiang, L. Controlled preparation of Ni–Cu alloy catalyst via hydrotalcite-like precursor and its enhanced catalytic performance for methane decomposition. Fuel Process. Technol. 2022, 233, 107271. [Google Scholar] [CrossRef]
- Yergaziyeva, G.; Makayeva, N.; Shaimerden, Z.; Soloviev, S.; Telbayeva, M.; Akkazin, E.; Ahmetova, F. Catalytic Decomposition of Methane to Hydrogen over Al2O3 Supported Mono– and Bimetallic Catalysts. Bull. Chem. React. Eng. Catal. 2022, 17, 1–12. [Google Scholar] [CrossRef]
- Alwan, B.A.A.; Shah, M.; Danish, M.; Mesfer, M.K.A.; Khan, M.I.; Natarajan, V. Enhanced methane decomposition over transition metal-based tri-metallic catalysts for the production of COx free hydrogen. J. Indian Chem. Soc. 2022, 99, 100393. [Google Scholar] [CrossRef]
- Parmar, K.R.; Pant, K.K.; Roy, S. Blue hydrogen and carbon nanotube production via direct catalytic decomposition of methane in fluidized bed reactor: Capture and extraction of carbon in the form of CNTs. Energy Convers. Manag. 2021, 232, 113893. [Google Scholar] [CrossRef]
- Hanifa, N.H.E.; Ismail, M.; Ideris, A. Methane decomposition over Ni supported on palm oil fuel ash (Ni-POFA) catalyst. Chem. Eng. Res. Des. 2022, 178, 224–231. [Google Scholar] [CrossRef]
- Yan, Q.; Ketelboeter, T.; Cai, Z. Production of COx-Free Hydrogen and Few-Layer Graphene Nanoplatelets by Catalytic Decomposition of Methane over Ni-Lignin-Derived Nanoparticles. Molecules 2022, 27, 503. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.W.; Dagle, R.A.; Khan, T.S.; Lopez-Ruiz, J.A.; Kovarik, L.; Jiang, Y.; Xu, M.; Wang, Y.; Jiang, C.; Davidson, S.D.; et al. Catalytic decomposition of methane into hydrogen and high-value carbons: Combined experimental and DFT computational study. Catal. Sci. Technol. 2021, 11, 4911–4921. [Google Scholar] [CrossRef]
- Silva, J.A.; Santos, J.B.O.; Torres, D.; Pinilla, J.L.; Suelves, I. Natural Fe-based catalysts for the production of hydrogen and carbon nanomaterials via methane decomposition. Int. J. Hydrogen Energy 2021, 46, 35137–35148. [Google Scholar] [CrossRef]
- Cazana, F.; Latorre, N.; Tarifa, P.; Royo, C.J.; Sebastian, V.; Romeo, E.; Centeno, M.A.; Monzon, A. Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature. Catal. Today 2022, 383, 236–246. [Google Scholar] [CrossRef]
- Kundu, R.; Ramasubramanian, V.; Neeli, S.T.; Ramsurn, H. Catalytic Pyrolysis of Methane to Hydrogen over Carbon (from cellulose biochar) Encapsulated Iron Nanoparticles. Energy Fuels 2021, 35, 13523–13533. [Google Scholar] [CrossRef]
- Kim, S.E.; Jeong, S.K.; Park, K.T.; Lee, K.Y.; Kim, H.J. Effect of oxygen-containing functional groups in metal-free carbon catalysts on the decomposition of methane. Catal. Commun. 2021, 148, 106167. [Google Scholar] [CrossRef]
- Boretti, A. Concentrated solar energy-driven carbon black catalytic thermal decomposition of methane. Int. J. Energy Res. 2021, 45, 21497–21508. [Google Scholar] [CrossRef]
- Boretti, A. A perspective on the production of hydrogen from solar-driven thermal decomposition of methane. Int. J. Hydrogen Energy 2021, 46, 34509–34514. [Google Scholar] [CrossRef]
- Munawar, M.A.; Khoja, A.H.; Hassan, M.; Liaquat, R.; Naqvi, S.R.; Mehran, M.T.; Abdullah, A.; Saleem, F. Biomass ash characterization, fusion analysis and its application in catalytic decomposition of methane. Fuel 2021, 285, 119107. [Google Scholar] [CrossRef]
- Raza, J.; Khoja, A.H.; Naqvi, S.R.; Mehran, M.T.; Shakir, S.; Liaquat, R.; Tahir, M.; Ali, G. Methane decomposition for hydrogen production over biomass fly ash-based CeO2 nanowires promoted cobalt catalyst. J. Environ. Chem. Eng. 2021, 9, 105816. [Google Scholar] [CrossRef]
- Henao, W.; Cazaña, F.; Tarifa, P.; Romeo, E.; Latorre, N.; Sebastian, V.; Delgado, J.J.; Monzón, A. Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chem. Eng. J. 2021, 404, 126103. [Google Scholar] [CrossRef]
- Awadallah, A.E.; Deyab, M.A.; Ahmed, H.A. Mo/MgO as an efficient catalyst for methane decomposition into COx-free hydrogen and multi-walled carbon nanotubes. J. Environ. Chem. Eng. 2021, 9, 106023. [Google Scholar] [CrossRef]
- Kreuger, T.; van Swaaij, W.P.M.; Bos, A.N.R.; Kersten, S.R.A. Methane decomposition kinetics on unfunctionalized alumina surfaces. Chem. Eng. J. 2022, 427, 130412. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Ind. Eng. Chem. Res. 2021, 60, 11855–11881. [Google Scholar] [CrossRef]
- Fan, Z.; Weng, W.; Zhou, J.; Gu, D.; Xiao, W. Catalytic decomposition of methane to produce hydrogen: A review. J. Energy Chem. 2021, 58, 415–430. [Google Scholar] [CrossRef]
- Pérez, B.J.L.; Jiménez, J.A.M.; Bhardwaj, R.; Goetheer, E.; Annaland, M.V.S.; Gallucci, F. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. Int. J. Hydrogen Energy 2021, 46, 4917–4935. [Google Scholar] [CrossRef]
- Kudinov, I.V.; Pimenov, A.A.; Kryukov, Y.A.; Mikheeva, G.V. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin. Int. J. Hydrogen Energy 2021, 46, 10183–10190. [Google Scholar] [CrossRef]
- Zaghloul, N.; Kodama, S.; Sekiguchi, H. Hydrogen Production by Methane Pyrolysis in a Molten-Metal Bubble Column. Chem. Eng. Technol. 2021, 44, 1986–1993. [Google Scholar] [CrossRef]
- Boo, J.; Ko, E.H.; Park, N.-K.; Ryu, C.; Kim, Y.-H.; Park, J.; Kang, D. Methane Pyrolysis in Molten Potassium Chloride: An Experimental and Economic Analysis. Energies 2021, 14, 8182. [Google Scholar] [CrossRef]
- Parkinson, B.; Patzschke, C.F.; Nikolis, D.; Raman, S.; Dankworth, D.C.; Hellgardt, K. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties. Int. J. Hydrogen Energy 2021, 46, 6225–6238. [Google Scholar] [CrossRef]
- Patzschke, C.F.; Parkinson, B.; Willis, J.J.; Nandi, P.; Love, A.M.; Raman, S.; Hellgardt, K. Co-Mn catalysts for H2 production via methane pyrolysis in molten salts. Chem. Eng. J. 2021, 414, 128730. [Google Scholar] [CrossRef]
- Noh, Y.G.; Lee, Y.J.; Kim, J.; Kim, Y.K.; Ha, J.S.; Kalanur, S.S.; Seo, H. Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads. Chem. Eng. J. 2022, 428, 131095. [Google Scholar] [CrossRef]
- Dagle, R.A.; Dagle, V.; Bearden, M.; Holladay, J.; Krause, T.; Ahmed, S. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products; Argonne National Laboratory: Lemont, IL, USA, 2017. [Google Scholar] [CrossRef]
- BASF Report. Innovative Processes for Climate-Smart Chemistry. 2021. Available online: https://report.basf.com/2021/en/shareholders/basf-on-the-capital-market/methane-pyrolysis.html (accessed on 27 June 2022).
Molten Medium | Ga | Sn | 5% Ni/Sn | KCl | NaBr:KBr | Co-Mn (2:1) | Ni/Bi = 27/73, NaBr | Ni/Bi = 27/73, ZrO2, NaBr |
---|---|---|---|---|---|---|---|---|
Temperature (°C) | 1119 | 1000 | 1050 | 1000 | 1000 | 850–1000 | 985 | 985 |
Feed Rate, Composition | 450 mL/min, 50% CH4/Ar | 25–250 mL/min, 100% CH4 | 70 mL/min, 35% CH4/N2 | 20 mL/min, 50% CH4/Ar | 15 mL/min, 100% CH4 | 45 mL/min, 33% CH4/Ar | 9 mL/min, 67% CH4/Ar | 9 mL/min, 67% CH4/Ar |
Residence Time (s) | 0.5 | n.a. | n.a. | 0.3 | 0.69–0.76 | n.a. | n.a. | n.a. |
Operation Time (h) | n.a. | n.a. | 5, steady state | 40, stable conv. | 24 | 24, stable conv. | 50, stable conv. | 50, stable conv. |
Max. CH4 Conversion (%) | 91 | n.a. | 19 | 1.8 | 5.85 | 10.52 | 32 | 38 |
Carbon morphology | carbon black | soot | graphite | amorphous | graphite + amorphous | graphite + amorphous | 70 wt% graphite | 74 wt% graphite |
Reactor Material | Quartz | n.a. | Alumina | Quartz | Quartz | Quartz | Quartz | Quartz |
Reactor Diameter (mm) | 36 | 35 | 30 | 15 | 16 | 16 | 8 | 8 |
Reactor Length (mm) | n.a. | 100 | 450 | 250 | 250 | 250 | 650 | 650 |
Reactor Filled Height (mm) | 50 | 23 | 100 | 75 | 190 | 190 | 65 | 86 |
Bubble Generator Diameter | 0.2 mm porous distributor | 0.5 mm nozzle | n.a. | 2 mm orifice | 2 mm orifice | 2 mm orifice | porous membrane | porous membrane |
Reference | [37] | [38] | [39] | [40] | [41] | [42] | [43] | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korányi, T.I.; Németh, M.; Beck, A.; Horváth, A. Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production. Energies 2022, 15, 6342. https://doi.org/10.3390/en15176342
Korányi TI, Németh M, Beck A, Horváth A. Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production. Energies. 2022; 15(17):6342. https://doi.org/10.3390/en15176342
Chicago/Turabian StyleKorányi, Tamás I., Miklós Németh, Andrea Beck, and Anita Horváth. 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production" Energies 15, no. 17: 6342. https://doi.org/10.3390/en15176342
APA StyleKorányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production. Energies, 15(17), 6342. https://doi.org/10.3390/en15176342