Modern Techniques for the Optimal Power Flow Problem: State of the Art
Abstract
:1. Introduction
2. Load Flow Problem Theory
- Algebraic (no derivatives), since we are in stationary conditions.
- Nonlinear, due to the presence of trigonometric functions and nodal voltages.
3. Principal Load Flow Methods: Clusters and Descriptions
3.1. Classical Methods
3.1.1. Newton—Raphson Method
3.1.2. Gauss—Seidel Method
- –
- algebraic (no derivatives) and
- –
- nonlinear.
- the generation and absorption powers on each busbar are known, the total powers at each bus are calculated,
- the Ybus is created,
- the nodal voltages (also in polar coordinates if desired) are set to the flat start value, and
- the solving equation is solved iteratively until convergence below a set tolerance is achieved.
3.2. About Optimal Power Flow
3.3. Non-Classical Methods
3.3.1. Probabilistic Load Flow Methods
Numerical Solution Methods
Analytical Solution Methods
3.3.2. Typical Grids Applications for Probabilistic Methods
3.3.3. Metaheuristic Methods for OPF
Genetic Algorithm (GA)
Programming in Evolution (EP)
Particle Swarm Optimization (PSO)
Differential Evolution (DE)
Artificial Bee Colony (ABC)
Gravitational Search Algorithm (GSA)
Wolf Optimization Algorithm
- Initializing the search agents.
- Assigning alpha, beta and gamma by fitness.
- Encircling the prey: represents the circular area around the best solution (prey).
- Hunting step: the encircling process comes to the second step involving hunting guided by the alpha wolf group.
- Attacking the prey.
- Steps 2 to 5 are then repeated until the maximum number of iterations is reached.
Cuckoo Optimization Algorithm
3.3.4. Application of Heuristic Methods on AC MV Grids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scarabaggio, P.; Carli, R.; Dotoli, M. Noncooperative Equilibrium Seeking in Distributed Energy Systems Under AC Power Flow Nonlinear Constraints. IEEE Trans. Control Netw. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Yao, M.; Molzahn, D.K.; Mathieu, J.L. An Optimal Power-Flow Approach to Improve Power System Voltage Stability Using Demand Response. IEEE Trans. Control Netw. Syst. 2019, 6, 1015–1025. [Google Scholar] [CrossRef]
- Bukhsh, W.A.; Grothey, A.; McKinnon, K.I.M.; Trodden, P.A. Local Solutions of the Optimal Power Flow Problem. IEEE Trans. Power Syst. 2013, 28, 4780–4788. [Google Scholar] [CrossRef]
- Martinez, J.A.; Mahseredjian, J. Load flow calculations in distribution systems with distributed resources. A review. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Charles, P.; Mehazzem, F.; Soubdhan, T. A Review on Optimal Power Flow Problems: Conventional and Metaheuristic Solutions. In Proceedings of the 2nd International Conference on Smart Power & Internet Energy Systems, Bangkok, Thailand, 15–18 September 2020; pp. 1–6. [Google Scholar]
- Haddi, S.; Bouketir, O.; Bouketir, T. Improved Optimal Power Flow for a Power System Incorporating Wind Power Generation by Using Grey Wolf Optimizer Algorithm. Power Eng. Electr. Eng. 2018, 16, 471–488. [Google Scholar] [CrossRef]
- Ramamohana, M.R.; Naresh Babu, A.V. Optimal power flow using cuckoo optimization algorithm. IJAREEIE 2013, 2, 4213–4218. [Google Scholar]
- Montoya, O.D.; Serra, F.M.; De Angelo, C.H.; Chamorro, H.R.; Alvarado-Barrios, L. Heuristic Methodology for Planning AC Rural Medium-Voltage Distribution Grids. Energies 2021, 14, 5141. [Google Scholar] [CrossRef]
- Momoh, J.A. Review of Optimization Techniques for Renewable Energy Resources. In Proceedings of the 2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications, Milwaukee, WI, USA, 24–26 July 2014; pp. 1–8. [Google Scholar]
- Martinez, J.A.; Mahseredjian, J. Load flow methods in Distribution Systems with Dispersed Generations: A brief review. In Proceedings of the 2015 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN), Arunachal Pradesh, India, 10–11 January 2015; pp. 1–4. [Google Scholar]
- Nusair, K.; Alhmoud, L. Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy. Energies 2020, 13, 6066. [Google Scholar] [CrossRef]
- Hossain, A.L.; Rokonuzzaman, M.; Amin, N.; Zhang, J.; Mishu, M.K.; Tan, W.-S.; Islam, M.R.; Roy, R.B. Probabilistic Load Flow–Based Optimal Placement and Sizing of Distributed Generators. In Proceedings of the 2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), Mysuru, India, 13–14 December 2019. [Google Scholar]
- Gulakhmadov, A.; Asanova, S.; Asanova, D.; Safaraliev, M.; Tavlintsev, A.; Lyukhanov, E.; Semenenko, S.; Odinaev, I. Power Flows and Losses Calculation in Radial Networks by Representing the Network Topology in the Hierarchical Structure Form. Energies 2022, 15, 765. [Google Scholar] [CrossRef]
- Carpentier, J. Contribution a l’etude du dispacting economique. Bull. Soc. Fr. Electr. 1962, 3, 431–447. [Google Scholar]
- Hiskens, I.A.; Davy, R.J. Exploring the power flow solution space boundary. IEEE Trans. Power Syst. 2001, 16, 389–395. [Google Scholar] [CrossRef]
- Momoh, J.A.; Koessler, R.; Bond, M.; Stott, B.; Sun, D.; Papalexopoulos, A.; Ristanovic, P. Challenges to optimal power flow. IEEE Trans. Power Syst. 1997, 12, 444–455. [Google Scholar] [CrossRef]
- Dommel, H.W.; Tinney, W.F. Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 1968, PAS-87, 1866–1876. [Google Scholar] [CrossRef]
- Momoh, J.A.; Adapa, R.; El-Hawary, M.E. A review of selected optimal power flow literature to 1993. i. nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 1999, 14, 96–104. [Google Scholar] [CrossRef]
- Momoh, J.A.; El-Hawary, M.E.; Adapa, R. A review of selected optimal power flow literature to 1993. ii. newton, linear programming and interior point methods. IEEE Trans. Power Syst. 1999, 14, 105–111. [Google Scholar] [CrossRef]
- Qiu, Z.; Deconinck, G.; Belmans, R. A literature survey of optimal power flow problems in the electricity market context. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009. [Google Scholar]
- AlRashidi, M.; El-Hawary, M. Applications of computational intelligence techniques for solving the revived optimal power flow problem. Electr. Power Syst. Res. 2009, 79, 694–702. [Google Scholar] [CrossRef]
- Lavaei, J.; Low, S.H. Convexification of optimal power flow problem. In Proceedings of the 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–1 October 2010. [Google Scholar]
- Zhang, B.; Tse, D. Geometry of injection regions of power networks. IEEE Trans. Power Syst. 2012, 28, 788–797. [Google Scholar] [CrossRef]
- Lavaei, J.; Tse, D.; Zhang, B. Geometry of power flows in tree networks. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Lesieutre, B.C.; Molzahn, D.K.; Borden, A.R.; DeMarco, C.L. Examining the limits of the application of semidefinite programming to power flow problems. In Proceedings of the 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 28–30 September 2011. [Google Scholar]
- Gopalakrishnan, A.; Raghunathan, A.U.; Nikovski, D.; Biegler, L.T. Global optimization of optimal power flow using a branch & bound algorithm. In Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 1–5 October 2012. [Google Scholar]
- Borkowska, B. Probabilistic load flow. IEEE Trans. Power Appar. Syst. 1974, 93, 752–759. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Schavemaker, P.; van der Sluis, L.; Kling, W.; Kurowicka, D.; Cooke, R. Integration of stochastic generation in power systems. Int. J. Electr. Power Energy Syst. 2006, 28, 655–667. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Kurowicka, D. Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Trans. Power Syst. 2009, 24, 40–49. [Google Scholar] [CrossRef]
- Hatziargyriou, N.D.; Karakatsanis, T.S.; Papadopoulos, M. Probabilistic load flow in distribution systems containing dispersed wind power generation. IEEE Trans. Power Syst. 1993, 8, 159–165. [Google Scholar] [CrossRef]
- Hatziargyriou, N.D.; Karakatsanis, T.S. Distribution system voltage and reactive power control based on probabilistic load flow analysis. IEE Proc. Gener. Transm. Distrib. 1997, 144, 363–369. [Google Scholar] [CrossRef]
- Su, C.L. Distribution Probabilistic Load Flow Solution Considering Network Reconfiguration and Voltage Control Devices; PSCC: Liege, Belgium, 2005. [Google Scholar]
- Conti, S.; Raiti, S. Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators. Sol. Energy 2007, 81, 1473–1481. [Google Scholar] [CrossRef]
- Caramia, P.; Carpinelli, G.; Varilone, P.; Verde, P. Probabilistic three-phase load flow. Electr. Power Energy Syst. 1999, 21, 55–69. [Google Scholar] [CrossRef]
- Das, D.; Ghosh, S.; Srinivas, D.K. Fuzzy distribution load flow. Electr. Power Energy Syst. 1999, 27, 1215–1226. [Google Scholar]
- Bijwe, P.R.; Raju, G.K.V. Fuzzy distribution power flow for weakly meshed systems. IEEE Trans. Power Syst. 2006, 21, 1645–1652. [Google Scholar] [CrossRef]
- Kalesar, B.M.; Sei, A.R. Fuzzy load flow in balanced and unbalanced radial distribution systems incorporating composite load model. Electr. Power Energy Syst. 2010, 32, 17–23. [Google Scholar] [CrossRef]
- Das, B. Consideration of Input Parameter Uncertainties in Load Flow Solution of Three-Phase Unbalanced Radial Distribution System. IEEE Trans. Power Syst. 2006, 21, 1088–1095. [Google Scholar] [CrossRef]
- Korpaas, M.; Holen, A.T.; Hildrum, R. Operation and sizing of energy storage for wind power plants in a market system. Int. J. Electr. Power Energy Syst. 2003, 25, 599–606. [Google Scholar] [CrossRef]
- Klöckl, B.; Stricker, P.; Koeppel, G. On the properties of stochastic power sources in combination with local energy storage. In Proceedings of the Cigre Symposium on Power Systems with Dispersed Generation, Athens, Greece, 13–16 April 2005. [Google Scholar]
- Koeppel, G.; Korpaas, M. Using storage devices for compensating uncertainties caused by non-dispatchable generators. In Proceedings of the 9th PMAPS, Stockholm, Sweden, 11–15 June 2006. [Google Scholar]
- Attia, A.-F.; Al-Turki, Y.A.; Abusorrah, A.M. Optimal Power Flow Using Adapted Genetic Algorithm with Adjusting Population Size. Electr. Power Compon. Syst. 2012, 40, 1285–1299. [Google Scholar] [CrossRef]
- Kahourzade, S.; Mahmoudi, A.; Mokhlis, H.B. A comparative study of multi-objective optimal power based on particle swarm, evolutionary programming and genetic algorithm. Electr. Eng. 2015, 97, 1–12. [Google Scholar] [CrossRef]
- Somasundaram, P.; Kuppusamy, K.; Devi, R.P.K. Evolutionary programming based security constrained optimal power _ow. J. Electr. Power Syst. Res. 2004, 72, 137145. [Google Scholar] [CrossRef]
- Kalfallah, N.; Benzergua, F.; Cherki, I.; Chaker, A. Use of Genetic Algorithm and Particle Swarm Optimisation Methods for the Optimal Control of Reactive Power in western Algerian Power System. Energy Procedia 2015, 74, 265–272. [Google Scholar]
- Varadarajan, M.; Swarup, K.S. Differential evolutionary algorithm for optimal reactive power dispatch. Electr. Power Energy Syst. 2008, 81, 435–441. [Google Scholar] [CrossRef]
- Varadarajan, M.; Swarup, K.S. Differential evolution approach for optimal reactive power dispatch. Appl. Soft Comput. 2008, 8, 1549–1561. [Google Scholar] [CrossRef]
- Ayan, K.; Klç, U.; Barakl, B. Chaotic artificial bee colony algorithm based solution of security and transient stability constrained optimal power flow. Electr. Power Energy Syst. 2015, 64, 136–147. [Google Scholar] [CrossRef]
- Adaryani, M.R.; Karami, A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Electr. Power Energy Syst. 2006, 53, 77–85. [Google Scholar]
- Rashedi, E.; Rashedi, E.; Nezamabadi, H. A comprehensive survey on gravitational search algorithm. Swarm Evol. Comput. 2018, 41, 141–158. [Google Scholar] [CrossRef]
- Duman, S.; Güvenç, U.; Sönmez, Y.; Yörükeren, N. Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 2012, 59, 86–95. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, S.K. Gravitational search assisted algorithm for TCSC placement for congestion control in deregulated power system. Electr. Power Syst. Res. 2019, 174, 113. [Google Scholar] [CrossRef]
- Mondal, S.; Bhattacharya, A.; Nee-Dey, S.H. Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int. J. Electr. Power Energy Syst. 2013, 44, 282–292. [Google Scholar] [CrossRef]
- El-Fergany, A.; Hasanien, H. Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms. Electr. Power Compon. Syst. 2015, 43, 1548–1559. [Google Scholar] [CrossRef]
- Mohamed, A.A.; El-Gaafary, A.M.; Mohamed, Y.S.; Hemeida, A.M. Multiobjective Modified Grey Wolf Optimizer for Optimal Power Flow. In Proceedings of the Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 982–990, ISBN 978-1-4673-9063-7. [Google Scholar] [CrossRef]
- Kapoor, S.; Zeya, I.; Singhal, C.; Nanda, S.J. A Grey Wolf Optimizer Based Automatic Clustering Algorithm for Satellite Image Segmentation. Procedia Comput. Sci. 2017, 115, 415–422. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Computing, NaBIC, Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Yang, X.S.; Deb, S. Engineering optimization by Cuckoo search. Int. J. Math. Modell. Numer. 2010, 1, 330–343. [Google Scholar]
- Rao, M.R.; Babu, A.N. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [Google Scholar]
- Abido, M.A. Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. 2002, 30, 469–483. [Google Scholar] [CrossRef]
- Picard, J.; Aguado, I.; Cobos, N.; Fuster-Roig, V.; Quijano-López, A. Electric Distribution System Planning Methodology Considering Distributed Energy Resources: A Contribution towards Real Smart Grid Deployment. Energies 2021, 14, 1924. [Google Scholar] [CrossRef]
- Riaño, F.; Cruz, J.; Montoya, O.; Chamorro, H.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419. [Google Scholar] [CrossRef]
- Li, R.; Wang, W.; Chen, Z.; Jiang, J.; Zhang, W. A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches. Energies 2017, 10, 1715. [Google Scholar] [CrossRef]
- Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2011, 27, 172–180. [Google Scholar] [CrossRef]
- Farrag, M. A new model for distribution system planning. Int. J. Electr. Power Energy Syst. 1999, 21, 523–531. [Google Scholar] [CrossRef]
- Mejía-Solanilla, A.M.; Hincapié-Isaza, R.A.; Gallego-Rendón, R.A. Optimal planning of distribution systems considering multipleobjectives: Investment cost, reliability and technical losses. Rev. Tecnura 2015, 19, 106. [Google Scholar]
- Dong, Y.F.; Gu, J.H.; Li, N.N.; Hou, X.D.; Yan, W.L. Combination of Genetic Algorithm and Ant Colony Algorithm for Distribution Network Planning. In Proceedings of the 2007 IEEE International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007. [Google Scholar]
- Kilyeni, S.; Barbulescu, C.; Simo, A.; Teslovan, R.; Oros, C. Genetic algorithm-based distribution network expansion planning. In Proceedings of the 2014 IEEE 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014. [Google Scholar]
- Montoya, O.D.; Grajales, A.; Hincapié, R.A.; Granada, M. A new approach to solve the distribution system planning problem considering automatic reclosers. Ing. Rev. Chil. Ing. 2017, 25, 415–429. [Google Scholar] [CrossRef]
- Montoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61. [Google Scholar] [CrossRef]
- Lavorato, M.; Rider, M.J.; Garcia, A.V.; Romero, R. Distribution network planning using a constructive heuristic algorithm. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009. [Google Scholar]
- Montoya, O.; Grajales, A.; Hincapié, R. Optimal selection of conductors in distribution systems using tabu search algorithm. Ing. Rev. Chil. Ing. 2018, 26, 283–295. [Google Scholar]
- Mohamad, H.; Zalnidzham, W.I.F.W.; Salim, N.A.; Shahbudin, S.; Yasin, Z.M. Power system restoration in distribution network using minimum spanning tree—Kruskal’s algorithm. Indones. J. Electr. Eng. Comput. Sci. 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Kumari, A.; Vaisakh, K. Ensuring expected security cost with flexible resources using modified DE algorithm based dynamic optimal power flow. Appl. Soft Comput. 2022, 124, 108991. [Google Scholar] [CrossRef]
- El-Sattar, S.A.; Kamel, S.; Ebeed, M.; Jurado, F. An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput. 2021, 25, 4027–4052. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.; Mallipeddi, R.; Amaratunga, G.A. Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng. Appl. Artif. Intell. 2018, 68, 81–100. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.N.; Mallipeddi, R.; Amaratunga, G.A.J. Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms. Soft Comput. 2019, 24, 2999–3023. [Google Scholar] [CrossRef]
- Deng, Z.; Rotaru, M.D.; Sykulski, J.K. Kriging Assisted Surrogate Evolutionary Computation to Solve Optimal Power Flow Problems. IEEE Trans. Power Syst. 2019, 35, 831–839. [Google Scholar] [CrossRef]
- Chen, G.; Qian, J.; Zhang, Z.; Li, S. Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem. Appl. Soft Comput. 2020, 92, 106321. [Google Scholar] [CrossRef]
- Kaur, M.; Narang, N. An integrated optimization technique for optimal power flow solution. Soft Comput. 2019, 24, 10865–10882. [Google Scholar] [CrossRef]
- Medina, M.A.; Das, S.; Coello, C.A.C.; Ramírez, J.M. Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow—A comparative study. Eng. Appl. Artif. Intell. 2014, 32, 10–20. [Google Scholar] [CrossRef]
- Pulluri, H.; Naresh, R.; Sharma, V. A solution network based on stud krill herd algorithm for optimal power flow problems. Soft Comput. 2016, 22, 159–176. [Google Scholar] [CrossRef]
- Kahraman, H.T.; Akbel, M.; Duman, S. Optimization of Optimal Power Flow Problem Using Multi-Objective Manta Ray Foraging Optimizer. Appl. Soft Comput. 2021, 116, 108334. [Google Scholar] [CrossRef]
- Sörensen, K. Metaheuristics–The metaphor exposed. Int. Trans. Oper. Res. 2013, 22, 3–18. [Google Scholar] [CrossRef]
- Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations. Cogn. Comput. 2020, 12, 897–939. [Google Scholar] [CrossRef]
- Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput. 2011, 11, 4135–4151. [Google Scholar] [CrossRef] [Green Version]
- D’Andreagiovanni, F.; Krolikowski, J.; Pulaj, J. A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods. Appl. Soft Comput. 2015, 26, 497–507. [Google Scholar] [CrossRef]
- Maciel, O.; Valdivia, A.; Oliva, D.; Cuevas, E.; Zaldívar, D.; Pérez-Cisneros, M. A novel hybrid metaheuristic optimization method: Hypercube natural aggregation algorithm. Soft Comput. 2019, 24, 8823–8856. [Google Scholar] [CrossRef]
- Shilaja, C.; Ravi, K. Optimal Power Flow Using Hybrid DA-APSO Algorithm in Renewable Energy Resources. Energy Procedia 2017, 117, 1085–1092. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risi, B.-G.; Riganti-Fulginei, F.; Laudani, A. Modern Techniques for the Optimal Power Flow Problem: State of the Art. Energies 2022, 15, 6387. https://doi.org/10.3390/en15176387
Risi B-G, Riganti-Fulginei F, Laudani A. Modern Techniques for the Optimal Power Flow Problem: State of the Art. Energies. 2022; 15(17):6387. https://doi.org/10.3390/en15176387
Chicago/Turabian StyleRisi, Benedetto-Giuseppe, Francesco Riganti-Fulginei, and Antonino Laudani. 2022. "Modern Techniques for the Optimal Power Flow Problem: State of the Art" Energies 15, no. 17: 6387. https://doi.org/10.3390/en15176387
APA StyleRisi, B. -G., Riganti-Fulginei, F., & Laudani, A. (2022). Modern Techniques for the Optimal Power Flow Problem: State of the Art. Energies, 15(17), 6387. https://doi.org/10.3390/en15176387