Application of Superparamagnetic Nanoparticle (SPM-NP) Heating in Wax Removal during Crude Oil Pipeline Pigging
Abstract
:1. Introduction
2. SPM-NP Pigging System
2.1. Heating Mechanism of Superparamagnetic Nanopaint
2.2. Configuration of the SPM-NP Pigging System
2.3. Parameters
2.4. Heating Efficacy of the SPM-NP Pigging System
3. Comparison of Wax Resistive Forces of Electromagnetic and Regular Pigs
3.1. The Relationship between Wax Layer Yield Stress and Temperature
3.2. Wax Resistive Forces of Electromagnetic and Regular Pigs
4. Factors Affecting Wax Layer Temperature
4.1. SPM-NP Size and Concentration
4.2. Electrical Current Intensity and Frequency
4.3. Induction Coil Turn Number and Diameter
4.4. Flow Rate and Pig Velocity
4.5. Inner Thermal Insulation Layer Thickness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammami, A.; Raines, M.A. Paraffin deposition from crude oils: Comparison of laboratory results with field data. SPE J. 1999, 4, 9–18. [Google Scholar] [CrossRef]
- Japper-Jaafar, A.; Bhaskoro, P.T.; Sean, L.L.; Sariman, M.Z.; Nugroho, H. Yield stress measurement of gelled waxy crude oil: Gap size requirement. J. Non Newton. Fluid Mech. 2015, 218, 71–82. [Google Scholar] [CrossRef]
- Stevenson, C.J.; Davies, S.R.; Gasanov, I.; Hawkins, P.; Demiroglu, M.; Marwood, A.P. Development and execution of a wax remediation pigging program for a subsea oil export pipeline. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2015. [Google Scholar]
- Rønningsen, H.P. Production of Waxy Oils on the Norwegian Continental Shelf: Experiences, Challenges, and Practices. Eng. Fuel 2012, 26, 4124–4136. [Google Scholar] [CrossRef]
- Aiyejina, A.; Chakrabarti, D.P.; Pilgrim, A.; Sastry, M. Wax formation in oil pipelines: A critical review. Int. J. Multiph. Flow 2011, 37, 671–694. [Google Scholar] [CrossRef]
- White, M.; Pierce, K.; Acharya, T. A review of wax-formation/mitigation technologies in the petroleum industry. SPE Prod. Oper. 2017, 33, 476–485. [Google Scholar] [CrossRef]
- Halstensen, M.; Arvoh, B.K.; Amundsen, L.; Hoffmann, R. Online estimation of wax deposition thickness in single-phase sub-sea pipelines based on acoustic chemometrics: A feasibility study. Fuel 2013, 105, 718–727. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, F.; Huang, Z.; Fogler, H.S. Effects of operating conditions on wax deposit carbon number distribution: Theory and experiment. Eng. Fuel 2013, 27, 7379–7388. [Google Scholar] [CrossRef]
- Li, W.; Huang, Q.; Wang, W.; Gao, X. Advances and future challenges of wax removal in pipeline pigging operations on crude oil transportation systems. Energy Technol. 2020, 8, 1901412. [Google Scholar] [CrossRef]
- Sarmento, R.C.; Ribbe, G.A.S.; Azevedo, L.F.A. Wax blockage removal by inductive heating of subsea pipelines. Heat Transf. Eng. 2004, 25, 2–12. [Google Scholar] [CrossRef]
- Wang, N.; Prodanovic, M.; Daigle, H. Nanopaint-aided electromagnetic pigging in pipelines and production tubing. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. [Google Scholar]
- Mehta, P.; Huh, C.; Bryant, S.L. Evaluation of superparamagnetic nanoparticle-based heating for flow assurance in subsea flowlines. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10–12 December 2014. [Google Scholar]
- Périgo, E.A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F.J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 041302. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Niu, X.; Ma, K.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13, 1602225. [Google Scholar] [CrossRef] [PubMed]
- Manohar, A.; Vijayakanth, V.; Pallavolu, M.R.; Kim, K.H. Effects of Ni-substitution on structural, magnetic hyperthermia and photocatalytic properties of MgFe2O4 nanoparticles. J. Alloys Compd. 2021, 879, 160515. [Google Scholar] [CrossRef]
- Kappiyoor, R.; Liangruksa, M.; Ganguly, R.; Puri, I.K. The effects of magnetic nanoparticle properties on magnetic fluid hyper-thermia. J. Appl. Phys. 2010, 108, 094702. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gu, H.; Yang, Z. The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 2005, 293, 334–340. [Google Scholar] [CrossRef]
- Lahiri, B.; Muthukumaran, T.; Philip, J. Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J. Magn. Magn. Mater. 2016, 407, 101–113. [Google Scholar] [CrossRef]
- Davidson, A.; Huh, C.; Bryant, S.L. Focused magnetic heating utilizing superparamagnetic nanoparticles for improved oil production applications. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June 2012. [Google Scholar]
- Hedayatnasab, Z.; Abnisa, F.; Daud, W.M.A.W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Design 2017, 123, 174–196. [Google Scholar] [CrossRef]
- Gonzales-Weimuller, M.; Zeisberger, M.; Krishnan, K.M. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1947–1950. [Google Scholar] [CrossRef]
- Brown, W.F., Jr. Thermal fluctuations of a single-domain particle. Phys. Rev. 1963, 130, 1677. [Google Scholar] [CrossRef]
- Rodriguez-Fabia, S.; Fyllingsnes, R.L.; Winter-Hjelm, N.; Norrman, J.; Paso, K.G. Influence of measuring geometry on rheomalaxis of macrocrystalline wax–oil gels: Alteration of breakage mechanism from adhesive to cohesive. Eng. Fuel. 2019, 33, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Prodanović, M.; Daigle, H. Nanopaint application for flow assurance with electromagnetic pig. J. Petrol. Sci. Eng. 2019, 180, 320–329. [Google Scholar] [CrossRef]
Name | Size (mm) | Name | Size (mm) |
---|---|---|---|
Inner diameter of inner steel pipe | 476.2 | Wax layer thickness | 2 |
Inner diameter of outer steel tube | 628.6 | Pig length | 631 |
Thickness of inner steel layer | 15.9 | Pig diameter | 438.2 |
Thickness of outer steel layer | 15.9 | Induction coil diameter | 336.2 |
Inner thermal insulation layer thickness | 0.5 | Induction coil length | 620 |
Outer thermal insulation layer thickness | 60.3 | Turn number of induction coil | 310 (turns) |
Nanopaint thickness | 2 |
Name | Steel Pipe | Induction Coil | Wax Layer | Nanopaint | Inner Thermal Insulation Layer | Outer Thermal Insulation Layer |
---|---|---|---|---|---|---|
Relative permeability | 1 | 1 | 1 | 2.1 | 1 | 1 |
Relative dielectric constant | 1 | 1 | 1 | 2.1 | 1 | 1 |
Conductivity [S/m] | 4.03 × 106 | 6.00 × 107 | 1.00 × 10−8 | 1.00 × 10−8 | 2.5× 10−8 | 2.5× 10−8 |
Heat capacity [J/(kg·K)] | 475 | 385 | 3430 | 3430 | 900 | 2000 |
Density [kg/m3] | 7850 | 8700 | 900 | 900 | 750 | 750 |
Thermal conductivity [W/(m·K)] | 44.5 | 400 | 0.25 | 0.25 | 0.1 | 0.17 |
Wax Layer Thickness (mm) | Wax Resistive Force (N) | Reduction Rate (%) | |
---|---|---|---|
Regular Pig | Electromagnetic Pig | ||
2 | 66.2 | 51.1 | 22.8 |
1.5 | 49.7 | 34.8 | 29.9 |
1 | 33.2 | 19.6 | 40.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, H.; Li, W.; Wang, J.; Wang, W.; Zhang, Y.; Teng, L.; Yin, P.; Huang, X. Application of Superparamagnetic Nanoparticle (SPM-NP) Heating in Wax Removal during Crude Oil Pipeline Pigging. Energies 2022, 15, 6464. https://doi.org/10.3390/en15176464
Zhang H, Li H, Li W, Wang J, Wang W, Zhang Y, Teng L, Yin P, Huang X. Application of Superparamagnetic Nanoparticle (SPM-NP) Heating in Wax Removal during Crude Oil Pipeline Pigging. Energies. 2022; 15(17):6464. https://doi.org/10.3390/en15176464
Chicago/Turabian StyleZhang, Hanqing, Huiyuan Li, Weidong Li, Jianguang Wang, Wenda Wang, Yongjuan Zhang, Lin Teng, Pengbo Yin, and Xin Huang. 2022. "Application of Superparamagnetic Nanoparticle (SPM-NP) Heating in Wax Removal during Crude Oil Pipeline Pigging" Energies 15, no. 17: 6464. https://doi.org/10.3390/en15176464
APA StyleZhang, H., Li, H., Li, W., Wang, J., Wang, W., Zhang, Y., Teng, L., Yin, P., & Huang, X. (2022). Application of Superparamagnetic Nanoparticle (SPM-NP) Heating in Wax Removal during Crude Oil Pipeline Pigging. Energies, 15(17), 6464. https://doi.org/10.3390/en15176464