A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels
Abstract
:1. Introduction
2. Issues Diminishing the Energy Conversion Capability of the Solar Panels
2.1. Degradation of Solar Panels
- The light-induced degradation is due to the interaction between the crystalline silicon cells with the environment. This can last some days.
- The direct light-induced degradation occurs during the first hours of direct exposure to the sun when the electronics within the solar cells can be distorted due to the incoming heat [9,10,11]. The phenomenon is due to the boosting material density, which makes the movement of electrons more difficult.
- The ultraviolet (UV) radiation can also harm solar cells from the very beginning of their exploitation [12]. When the solar cells are initially exposed to sunlight, the crystalline silicon oxide on their surface forms a layer of boron dioxide, which also reduces their efficiency. These degradations are more intensive at higher temperatures.
2.2. Environmental Effects
2.3. Solar Panel Power Loss Quantitative Estimation
3. Alleviation Methods against Diminishing the Energy Conversion Efficiency in Solar Panels
3.1. Solar Panel Maintenance
3.1.1. Maintenance Methods
- Preventive maintenance usually covers physical inspections following the prescriptions from the operations manuals. It can be performed based on an inspection plan comprising daily up to yearly scheduled tasks [49]. These are related to the visual inspection of the solar cells to observe degradations and soiling, and to infrared thermography for the detection of hot/cold spots. Furthermore, quantitative examination can be useful, such as current–voltage characteristics and insulation resistance analysis [39,50].
- Corrective maintenance tasks are accomplished after the occurrence of solar panel faults to bring them back to their initial working state [51]. In the frame of these tasks, the workers may tighten loose cable connections, replace faulted cells, fix control and positioning system faults, etc.
- Predictive maintenance is a condition-based activity based on monitoring, analysis, and evaluation of the principal parameters of solar panels.
- Additional maintenance comprises activities performed for keeping the solar panels clean and shadeless [52]. For this purpose, dedicated shade measurement tools can also be used.
- Extraordinary maintenance is needed when unpredictable events take place, such as calamities, the need to move the panels, or changes required by regulation modifications [53].
3.1.2. Condition Monitoring
3.2. Technical Methods to Be Applied
3.2.1. Improving Solar Panel Structure and Quality
3.2.2. Cooling of the Solar Panels
3.2.3. Applying Bypass Diodes
3.2.4. Mitigating PID
3.2.5. Cleaning the Solar Panels
3.2.6. Self-Cleaning the Solar Panels
4. Discussion
- Simplicity (concerning both the needed materials, tools and the required skills of the operating person). The dry cleaning is the most undemanding method, while the most complicated is the panel surface coating (both concerning technology and required research groundwork).
- Accessibility depends on the placement of the solar panels. Obviously, where the solar panels were mounted in remote or difficult-to-access places, manual cleaning methods cannot be considered.
- Geographical and environmental aspects. In locations with heavy rains, solar panel cleaning is not intensive work. On the contrary, in desert areas with significant sand/dust depositions the self-cleaning surfaces cannot cope with the great quantity of depositions. In such cases, the wet method should be the most adequate, but in several circumstances in such areas water is radically missing or needed for drinking.
- Cost-related issues are mandatory to be primary considerations in any application. Of course, dry cleaning is the most efficient from this point of view since it requires only simple and cheap tools. The exigent self-cleaning methods are the lowest ranked upon this criterion.
- Environmental issues are also very important to be considered. Wet cleaning methods need a great quantity of precious water and the dirty water remaining after washing the solar panels must be also treated. Meanwhile, the self-cleaning surfaces do not pollute at all the environment, at least locally where the solar panels are placed.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smil, V. World History and Energy. In Encyclopedia of Energy; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 6, pp. 549–561. [Google Scholar]
- Szabó, L. The history of using solar energy. In Proceedings of the 7th International Conference on Modern Power Systems (MPS 2017), Cluj-Napoca, Romania, 6–9 June 2017. [Google Scholar] [CrossRef]
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Solar Continues to Break Installation Records, on Track for Terawatt Scale by 2022. Available online: https://www.solarpowereurope.org/solar-continues-to-break-installation-records-on-track-for-terawatt-scale-by-2022/ (accessed on 22 January 2022).
- Herceg, S.; Pinto Bautista, S.; Weiß, K.-A. Influence of waste management on the environmental footprint of electricity produced by photovoltaic systems. Energies 2020, 13, 2146. [Google Scholar] [CrossRef]
- Modrzynski, C.; Blaesing, L.; Hippmann, S.; Bertau, M.; Bloh, J.Z.; Weidlich, C. Electrochemical recycling of photovoltaic modules to recover metals and silicon wafers. Chem. Ing. Tech. 2021, 93, 1851–1858. [Google Scholar] [CrossRef]
- Schoden, F.; Dotter, M.; Knefelkamp, D.; Blachowicz, T.; Schwenzfeier-Hellkamp, E. Review of state of the art recycling methods in the context of dye sensitized solar cells. Energies 2021, 14, 3741. [Google Scholar] [CrossRef]
- Jordan, D.C.; Silverman, T.J.; Wohlgemuth, J.H.; Kurtz, S.R.; VanSant, K.T. Photovoltaic failure and degradation modes. Prog. Photovolt. Res. Appl. 2017, 25, 318–326. [Google Scholar] [CrossRef]
- Lindroos, J.; Savin, H. Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 115–126. [Google Scholar] [CrossRef]
- Schmidt, J.; Bredemeier, D.; Walter, D.C. On the defect physics behind light and elevated temperature-induced degradation (LeTID) of multicrystalline silicon solar cells. IEEE J. Photovolt. 2019, 9, 1497–1503. [Google Scholar] [CrossRef]
- Bernardini, S.; Saynova, D.; Binetti, S.; Coletti, G. Light-induced degradation in compensated mc-Si p-type solar cells. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PHSP 2012), Austin, TX, USA, 4 October 2012; pp. 3242–3247. [Google Scholar] [CrossRef]
- Witteck, R.; Schulte-Huxel, H.; Veith-Wolf, B.; Vogt, M.R.; Kiefer, F.; Kontges, M.; Peibst, R.; Brendel, R. Reducing UV induced degradation losses of solar modules with c-Si solar cells featuring dielectric passivation layers. In Proceedings of the 44th Photovoltaic Specialist Conference (PVSC 2017), Washington, DC, USA, 25–30 June 2017; pp. 1366–1370. [Google Scholar] [CrossRef]
- Kim, M. Understanding the Mechanisms of Light-Induced Degradation in Crystalline Silicon. Ph.D. Thesis, University of New South Wales, Sydney, NSW, Australia, 2020. [Google Scholar]
- Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.-C.; Yi, J. A review of the degradation of photovoltaic modules for life expectancy. Energies 2021, 14, 4278. [Google Scholar] [CrossRef]
- Da Fonseca, J.E.F.; de Oliveira, F.S.; Prieb, C.W.M.; Krenzinger, A. Degradation analysis of a photovoltaic generator after operating for 15 years in southern Brazil. Sol. Energy 2020, 196, 196–206. [Google Scholar] [CrossRef]
- Virtuani, A.; Caccivio, M.; Annigoni, E.; Friesen, G.; Chianese, D.; Ballif, C.; Sample, T. 35 years of photovoltaics: Analysis of the TISO-10-kW solar plant, lessons learnt in safety and performance—Part 1. Prog. Photovolt. Res. Appl. 2019, 27, 328–339. [Google Scholar] [CrossRef]
- Vieira, R.G.; de Araújo, F.M.; Dhimish, M.; Guerra, M.I. A comprehensive review on bypass diode application on photovoltaic modules. Energies 2020, 13, 2472. [Google Scholar] [CrossRef]
- Wang, Y.; Itako, K.; Kudoh, T.; Koh, K.; Ge, Q. Voltage-based hot-spot detection method for photovoltaic string using a projector. Energies 2017, 10, 230. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Hacke, P.; Naumann, V.; Lausch, D.; Harvey, S.P.; Singh, J.P.; Chai, J.; Wang, Y.; Aberle, A.G. Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ. Sci. 2017, 10, 43–68. [Google Scholar] [CrossRef]
- Pingel, S.; Frank, O.; Winkler, M.; Daryan, S.; Geipel, T.; Hoehne, H.; Berghold, J. Potential induced degradation of solar cells and panels. In Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC 2010), Honolulu, HI, USA, 20–25 June 2010; pp. 2817–2822. [Google Scholar] [CrossRef]
- Hybrid Solar Panel Structure. Available online: https://commons.wikimedia.org/wiki/File:Hybrid_Solar_Panel_Structure.jpg (accessed on 23 February 2022).
- Nagel, H.; Glatthaar, M.; Glunz, S.W. Quantitative assessment of the local leakage current in PV modules for degradation prediction. In Proceedings of the 31st European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015. [Google Scholar] [CrossRef]
- El-Gharbawy, A. Review on corrosion in solar panels. Int. J. Smart Grid-IjSmartGrid 2018, 2, 218–220. [Google Scholar] [CrossRef]
- Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Iseghem, M.V. Performance and Reliability of Photovoltaic Systems. Subtask 3.2: Review of Failures of Photovoltaic Modules. Research Report IEA PVPS Task 13. Available online: https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/ (accessed on 18 February 2022).
- De Oliveira, M.C.C.; Cardoso, A.S.A.D.; Viana, M.M.; Lins, V.d.F.C. The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renew. Sustain. Energy Rev. 2018, 81, 2299–2317. [Google Scholar] [CrossRef]
- Hasan, A.A.; Ahmed Alkahtani, A.; Shahahmadi, S.A.; Alam, N.E.; Islam, M.A.; Amin, N. Delamination-and electromigration-related failures in solar panels—A review. Sustainability 2021, 13, 6882. [Google Scholar] [CrossRef]
- Dobra, T.; Vollprecht, D.; Pomberger, R. Thermal delamination of end-of-life crystalline silicon photovoltaic modules. Waste Manag. Res. 2021, 40, 96–103. [Google Scholar] [CrossRef]
- Wohlgemuth, J.H.; Kempe, M.D.; Miller, D.C. Discoloration of PV encapsulants. In Proceedings of the 39th Photovoltaic Specialists Conference (PVSC 2013), Tampa Bay, FL, USA, 16–21 June 2013; pp. 3260–3265. [Google Scholar] [CrossRef]
- Gabor, A.M.; Schneller, E.J.; Seigneur, H.; Rowell, M.W.; Colvin, D.; Hopwood, M.; Davis, K.O. The impact of cracked solar cells on solar panel energy delivery. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC 2020), Virtual Meeting, 15–21 August 2020; pp. 0810–0813. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M. The impact of cracks on photovoltaic power performance. J. Sci. Adv. Mater. Devices 2017, 2, 199–209. [Google Scholar] [CrossRef]
- Bdour, M.; Dalala, Z.; Al-Addous, M.; Radaideh, A.; Al-Sadi, A. A comprehensive evaluation on types of microcracks and possible effects on power degradation in photovoltaic solar panels. Sustainability 2020, 12, 6416. [Google Scholar] [CrossRef]
- Ennemri, A.; Logerais, P.; Balistrou, M.; Durastanti, J.; Belaidi, I. Cracks in silicon photovoltaic modules: A review. J. Optoelectron. Adv. Mater. 2019, 21, 74–92. [Google Scholar]
- Meyer, S.; Richter, S.; Timmel, S.; Gläser, M.; Werner, M.; Swatek, S.; Hagendorf, C. Snail trails: Root cause analysis and test procedures. Energy Procedia 2013, 38, 498–505. [Google Scholar] [CrossRef]
- Hussain, A.; Batra, A.; Pachauri, R. An experimental study on effect of dust on power loss in solar photovoltaic module. Renew. Wind. Water Sol. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Bodnár, I.; Tóth, L.; Somogyiné Molnár, J.; Szabó, N.; Erdősy, D.; Boros, R. Examination the effect of environmental factors on a photovoltaic solar panel. In Solutions for Sustainable Development: Proceedings of the 1st International Conference on Engineering Solutions for Sustainable Development (ICESSD 2019), Miskolc, Hungary, 3–4 October 2019; Tóthné Szita, K., Jármai, K., Voith, K., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 108–114. [Google Scholar]
- Ilse, K.; Micheli, L.; Figgis, B.W.; Lange, K.; Daßler, D.; Hanifi, H.; Wolfertstetter, F.; Naumann, V.; Hagendorf, C.; Gottschalg, R. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Mejia, F.; Kleissl, J.; Bosch, J. The effect of dust on solar photovoltaic systems. Energy Procedia 2014, 49, 2370–2376. [Google Scholar] [CrossRef] [Green Version]
- Yotham, A.; Pogrebnaya, T.; Kichonge, B. Effect of industrial dust deposition on photovoltaic module performance: Experimental measurements in the tropical region. Int. J. Photoenergy 2019, 2019, 1892148. [Google Scholar]
- Bosman, L.B.; Leon-Salas, W.D.; Hutzel, W.; Soto, E.A. PV system predictive maintenance: Challenges, current approaches, and opportunities. Energies 2020, 13, 1398. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef]
- Kennedy, J.; Lo, A.; Rajamani, H.-S.; Lutfi, S. Solar and sand: Dust deposit mitigation in the desert for PV arrays. Sustain. Energy Grids Netw. 2021, 28, 100531. [Google Scholar] [CrossRef]
- Solis, J.; Råberg, A.; André, J.; Nilsson, M. Analyzing the effect of snow in PV regulator response in a PV solar park. In Proceedings of the 9th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 29 June–1 July 2021; pp. 72–75. [Google Scholar] [CrossRef]
- Solar Panels Covered by Sand. Available online: https://live.staticflickr.com/3204/2858555432_9918350e26_b.jpg (accessed on 23 February 2022).
- Solar Panels Covered by Snow. Available online: https://pixabay.com/photos/solar-covered-snow-snowy-5903373/ (accessed on 23 February 2022).
- Skomedal, Å.; Deceglie, M.G. Combined estimation of degradation and soiling losses in photovoltaic systems. IEEE J. Photovolt. 2020, 10, 1788–1796. [Google Scholar] [CrossRef]
- Deceglie, M.G.; Muller, M.; Jordan, D.C.; Deline, C. Numerical validation of an algorithm for combined soiling and degradation analysis of photovoltaic systems. In Proceedings of the 46th Photovoltaic Specialists Conference (PVSC 2019), Chicago, IL, USA, 16–21 June 2019; pp. 3111–3114. [Google Scholar] [CrossRef]
- Iftikhar, H.; Sarquis, E.; Branco, P. Why can simple operation and maintenance (O&M) practices in large-scale grid-connected PV power plants play a key role in improving its energy output? Energies 2021, 14, 3798. [Google Scholar] [CrossRef]
- Magee, S. Solar Photovoltaic Operation and Maintenance for Residential, Commercial and Utility Systems; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2010. [Google Scholar]
- Baklouti, A.; Mifdal, L.; Dellagi, S.; Chelbi, A. An optimal preventive maintenance policy for a solar photovoltaic system. Sustainability 2020, 12, 4266. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, C.; Lv, M.; Ma, Y.; Guan, N. Photovoltaic array fault detection by automatic reconfiguration. Energies 2017, 10, 699. [Google Scholar] [CrossRef]
- Rukijkanpanich, J.; Mingmongkol, M. Enhancing performance of maintenance in solar power plant. J. Qual. Maint. Eng. 2019, 26, 575–591. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K. A review of dust accumulation and cleaning methods for solar photovoltaic systems. J. Clean. Prod. 2020, 276, 123187. [Google Scholar] [CrossRef]
- Amin, S.B.; Chowdhury, M.I.; Ehsan, S.A.; Iqbal, S.Z. Solar energy and natural disasters: Exploring household coping mechanisms, capacity, and resilience in Bangladesh. Energy Res. Soc. Sci. 2021, 79, 102190. [Google Scholar] [CrossRef]
- Lughofer, E.; Sayed-Mouchaweh, M. Predictive Maintenance in Dynamic Systems: Advanced Methods, Decision Support Tools and Real-World Applications; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Gonzalo, A.P.; Marugán, A.P.; Márquez, F.P.G. Survey of maintenance management for photovoltaic power systems. Renew. Sustain. Energy Rev. 2020, 134, 110347. [Google Scholar] [CrossRef]
- Kandeal, A.; Elkadeem, M.; Thakur, A.K.; Abdelaziz, G.B.; Sathyamurthy, R.; Kabeel, A.; Yang, N.; Sharshir, S.W. Infrared thermography-based condition monitoring of solar photovoltaic systems: A mini review of recent advances. Sol. Energy 2021, 223, 33–43. [Google Scholar] [CrossRef]
- Herraiz, Á.H.; Marugán, A.P.; Márquez, F.P.G. A review on condition monitoring system for solar plants based on thermography. In Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets; Papaelias, M., Márquez, F.P.G., Karyotakis, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 103–118. [Google Scholar] [CrossRef]
- Márquez, F.P.G.; Ramírez, I.S. Condition monitoring system for solar power plants with radiometric and thermographic sensors embedded in unmanned aerial vehicles. Measurement 2019, 139, 152–162. [Google Scholar] [CrossRef]
- Santhakumari, M.; Sagar, N. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renew. Sustain. Energy Rev. 2019, 110, 83–100. [Google Scholar] [CrossRef]
- Mallor, F.; León, T.; De Boeck, L.; Van Gulck, S.; Meulders, M.; Van der Meerssche, B. A method for detecting malfunctions in PV solar panels based on electricity production monitoring. Sol. Energy 2017, 153, 51–63. [Google Scholar] [CrossRef]
- Lappalainen, K.; Piliougine, M.; Spagnuolo, G. Experimental comparison between various fitting approaches based on RMSE minimization for photovoltaic module parametric identification. Energy Convers. Manag. 2022, 258, 115526. [Google Scholar] [CrossRef]
- Kalliojärvi-Viljakainen, H.; Lappalainen, K.; Valkealahti, S. A novel procedure for identifying the parameters of the single-diode model and the operating conditions of a photovoltaic module from measured current–voltage curves. Energy Rep. 2022, 8, 4633–4640. [Google Scholar] [CrossRef]
- Colli, A. Failure mode and effect analysis for photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 50, 804–809. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B. Reliability-oriented design of a solar-PV deployments. Energies 2021, 14, 6535. [Google Scholar] [CrossRef]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Herraiz, Á.H.; Marugán, A.P.; Márquez, F.P.G. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renew. Energy 2020, 153, 334–348. [Google Scholar] [CrossRef]
- Shapsough, S.; Zualkernan, I.; Dhaouadi, R. Deep learning at the edge for operation and maintenance of large-scale solar farms. In Smart Grid and Internet of Things. SGIoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Lin, Y.B., Deng, D.J., Eds.; Springer: Cham, Switzerland, 2020; Volume 354, pp. 27–44. [Google Scholar]
- Beránek, V.; Olšan, T.; Libra, M.; Poulek, V.; Sedláček, J.; Dang, M.-Q.; Tyukhov, I.I. New monitoring system for photovoltaic power plants’ management. Energies 2018, 11, 2495. [Google Scholar] [CrossRef]
- López-Vargas, A.; Fuentes, M.; Vivar, M. IoT application for real-time monitoring of solar home systems based on Arduino™ with 3G connectivity. IEEE Sens. J. 2018, 19, 679–691. [Google Scholar] [CrossRef]
- Parikh, A.; Pathan, F.; Rathod, B.; Shah, S. Solar panel condition monitoring system based on wireless sensor network. Int. J. Sci. Eng. Technol. Res. 2015, 4, 4320–4324. [Google Scholar] [CrossRef]
- Badave, P.M.; Karthikeyan, B.; Badave, S.; Mahajan, S.; Sanjeevikumar, P.; Gill, G.S. Health monitoring system of solar photovoltaic panel: An internet of things application. In Advances in Smart Grid and Renewable Energy; SenGupta, S., Zobaa, A., Sherpa, K., Bhoi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 347–355. [Google Scholar]
- Vicente-Gabriel, J.; Gil-González, A.-B.; Luis-Reboredo, A.; Chamoso, P.; Corchado, J.M. LSTM networks for overcoming the challenges associated with photovoltaic module maintenance in smart cities. Electronics 2021, 10, 78. [Google Scholar] [CrossRef]
- Lim, J.R.; Shin, W.G.; Hwang, H.; Ju, Y.-C.; Ko, S.W.; Yoon, H.S.; Kang, G.H. Analytical study of the electrical output characteristics of c-Si solar cells by cut and shading phenomena. Energies 2018, 11, 3397. [Google Scholar] [CrossRef]
- Akram, M.W.; Li, G.; Jin, Y.; Zhu, C.; Javaid, A.; Akram, M.Z.; Khan, M.U. Study of manufacturing and hotspot formation in cut cell and full cell PV modules. Sol. Energy 2020, 203, 247–259. [Google Scholar] [CrossRef]
- Kopecek, R.; Libal, J. Bifacial photovoltaics 2021: Status, opportunities and challenges. Energies 2021, 14, 2076. [Google Scholar] [CrossRef]
- Meyer, S.; Timmel, S.; Richter, S.; Werner, M.; Gläser, M.; Swatek, S.; Braun, U.; Hagendorf, C. Silver nanoparticles cause snail trails in photovoltaic modules. Sol. Energy Mater. Sol. Cells 2014, 121, 171–175. [Google Scholar] [CrossRef]
- Duerr, I.; Bierbaum, J.; Metzger, J.; Richter, J.; Philipp, D. Silver grid finger corrosion on snail track affected PV modules–investigation on degradation products and mechanisms. Energy Procedia 2016, 98, 74–85. [Google Scholar] [CrossRef]
- Solar Cell Busbar: 3BB, 5BB or 0BB? Available online: https://sinovoltaics.com/technology/solar-cell-busbar-3bb-5bb-or-0bb/ (accessed on 29 August 2022).
- Braun, S.; Hahn, G.; Nissler, R.; Pönisch, C.; Habermann, D. Multi-busbar solar cells and modules: High efficiencies and low silver consumption. Energy Procedia 2013, 38, 334–339. [Google Scholar] [CrossRef]
- Fischer, M.; Woodhouse, M.; Herritsch, S.; Trube, J. International Technology Roadmap for Photovoltaic (ITRPV)—2021 Results; VDMA Photovoltaic Equipment: Frankfurt am Main, Germany, 2022. [Google Scholar]
- Panda, T.; Sadhukhan, S.; Acharyya, S.; Banerjee, P.; Nandi, A.; Bose, S.; Mondal, N.; Das, G.; Maity, S.; Chaudhuri, P. Impact of multi-busbar front grid patterns on the performance of industrial type c-Si solar cell. Sol. Energy 2022, 236, 790–801. [Google Scholar] [CrossRef]
- Klasen, N.; Weisser, D.; Rößler, T.; Neuhaus, D.H.; Kraft, A. Performance of shingled solar modules under partial shading. Prog. Photovolt. Res. Appl. 2022, 30, 325–338. [Google Scholar] [CrossRef]
- Fuyuki, T.; Kitiyanan, A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl. Phys. A 2009, 96, 189–196. [Google Scholar] [CrossRef]
- Deubener, J.; Helsch, G.; Moiseev, A.; Bornhöft, H. Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 2009, 29, 1203–1210. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Perrella, S.; Cirone, D.; Bruno, R.; Arcuri, N. Efficiency improvement of photovoltaic modules via back surface cooling. Energies 2021, 14, 895. [Google Scholar] [CrossRef]
- Arifin, Z.; Suyitno, S.; Tjahjana, D.D.D.P.; Juwana, W.E.; Putra, M.R.A.; Prabowo, A.R. The effect of heat sink properties on solar cell cooling systems. Appl. Sci. 2020, 10, 7919. [Google Scholar] [CrossRef]
- Kim, J.; Nam, Y. Study on the cooling effect of attached fins on PV using CFD simulation. Energies 2019, 12, 758. [Google Scholar] [CrossRef]
- Szabó, L. Additive manufacturing of cooling systems used in power electronics. A brief survey. In Proceedings of the 29th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED 2022), Moskow, Rusia, 26–29 January 2022; p. 32. [Google Scholar] [CrossRef]
- Szabó, L. Survey on applying 3D printing in manufacturing the cooling systems of electrical machines. In Proceedings of the International Conference on Automation, Quality and Testing, Robotics (AQTR 2022), Cluj-Napoca, Romania, 21–22 May 2022. [Google Scholar] [CrossRef]
- Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E.; Kirpichnikova, I. Advanced cooling techniques of PV modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. [Google Scholar] [CrossRef]
- Virtuani, A.; Annigoni, E.; Ballif, C. One-type-fits-all-systems: Strategies for preventing potential-induced degradation in crystalline silicon solar photovoltaic modules. Prog. Photovolt. Res. Appl. 2019, 27, 13–21. [Google Scholar] [CrossRef]
- López-Escalante, M.; Caballero, L.J.; Martín, F.; Gabás, M.; Cuevas, A.; Ramos-Barrado, J. Polyolefin as PID-resistant encapsulant material in PV modules. Sol. Energy Mater. Sol. Cells 2016, 144, 691–699. [Google Scholar] [CrossRef]
- Dhimish, M.; Hu, Y.; Schofield, N.; G Vieira, R. Mitigating potential-induced degradation (PID) using SiO2 ARC layer. Energies 2020, 13, 5139. [Google Scholar] [CrossRef]
- Kambe, M.; Hara, K.; Mitarai, K.; Takeda, S.; Fukawa, M.; Ishimaru, N.; Kondo, M. Chemically strengthened cover glass for preventing potential induced degradation of crystalline silicon solar cells. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC 2013), Tampa, FL, USA, 16–21 June 2013; pp. 3500–3503. [Google Scholar] [CrossRef]
- Hara, K.; Ichinose, H.; Murakami, T.N.; Masuda, A. Crystalline Si photovoltaic modules based on TiO2-coated cover glass against potential-induced degradation. RSC Adv. 2014, 4, 44291–44295. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, H.; Sun, L.; Yang, J.; Wu, S.; Lu, Z. Bifacial p-type PERC solar cell with efficiency over 22% using laser doped selective emitter. Energies 2020, 13, 1388. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Tang, H.; Li, Z.; Kong, X.; Shen, W. Application of SiOxNy films in industrial bifacial PERC solar cells. Sol. Energy Mater. Sol. Cells 2021, 230, 111199. [Google Scholar] [CrossRef]
- Oh, K.-S.; Bae, S.; Lee, K.-J.; Kim, D.; Chan, S.-i. Mitigation of potential-induced degradation (PID) based on anti-reflection coating (ARC) structures of PERC solar cells. Microelectron. Reliab. 2019, 100, 113462. [Google Scholar] [CrossRef]
- Niazi, K.A.K.; Yang, Y.; Kerekes, T.; Sera, D. Reconfigurable distributed power electronics technique for solar PV systems. Electronics 2021, 10, 1121. [Google Scholar] [CrossRef]
- De Rooij, D. Potential Induced Degradation (PID): How to Reverse or Prevent Solar PID? Available online: https://sinovoltaics.com/technology/potential-induced-degradation-pid-how-to-reverse-prevent/ (accessed on 28 February 2022).
- Nagel, H.; Metz, A.; Wangemann, K. Crystalline Si solar cells and modules featuring excellent stability against potential-induced degradation. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 5–9 September 2011; pp. 3107–3112. [Google Scholar] [CrossRef]
- Smith, M.K.; Wamser, C.C.; James, K.E.; Moody, S.; Sailor, D.J.; Rosenstiel, T.N. Effects of natural and manual cleaning on photovoltaic output. J. Sol. Energy Eng. 2013, 135, SOL-12-1193. [Google Scholar] [CrossRef]
- Alvarez, D.L.; Al-Sumaiti, A.S.; Rivera, S.R. Estimation of an optimal PV panel cleaning strategy based on both annual radiation profile and module degradation. IEEE Access 2020, 8, 63832–63839. [Google Scholar] [CrossRef]
- Al Shehri, A.; Parrott, B.; Carrasco, P.; Al Saiari, H.; Taie, I. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Sol. Energy 2016, 135, 317–324. [Google Scholar] [CrossRef]
- He, G.; Zhou, C.; Li, Z. Review of self-cleaning method for solar cell array. Procedia Eng. 2011, 16, 640–645. [Google Scholar] [CrossRef]
- Optimizing Solar Panel Cleaning in PV Installations. Available online: https://www.laborelec.com/services/optimizing-solar-panel-cleaning-in-pv-installations/ (accessed on 28 August 2022).
- Micheli, L.; Fernández, E.F.; Almonacid, F. Photovoltaic cleaning optimization through the analysis of historical time series of environmental parameters. Sol. Energy 2021, 227, 645–654. [Google Scholar] [CrossRef]
- Rodrigo, P.M.; Gutiérrez, S.; Micheli, L.; Fernández, E.F.; Almonacid, F. Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico. Sol. Energy 2020, 209, 11–20. [Google Scholar] [CrossRef]
- Reliable Energy Monitoring Solution. Available online: https://www.thingnario.com/ (accessed on 28 August 2022).
- Gao, L.; McCarthy, T.J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237. [Google Scholar] [CrossRef]
- Sarkın, A.S.; Ekren, N.; Sağlam, Ş. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Zhao, W.; Lu, H. Self-cleaning performance of super-hydrophilic coatings for dust deposition reduction on solar photovoltaic cells. Coatings 2021, 11, 1059. [Google Scholar] [CrossRef]
- Bukhari, F.; Lisco, F.; Uličná, S.; Barth, K.; Walls, J.M. Abrasion resistance of hydrophobic, anti-soiling coatings for solar cover glass. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC 2020), Calgary, AB, Canada, 15 June–21 August 2020; pp. 1866–1870. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Machado, M.; Nohava, J.; Yurrita, N.; Sanz, A.; Brizuela, M.; Zubillaga, O.; Tercjak, A. Mechanical properties and field performance of hydrophobic antireflective sol-gel coatings on the cover glass of photovoltaic modules. Sol. Energy Mater. Sol. Cells 2020, 216, 110694. [Google Scholar] [CrossRef]
- Kumaragurubaran, B.; Anandhi, S. Reduction of reflection losses in solar cell using anti reflective coating. In Proceedings of the International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC 2014), Chennai, India, 16–17 April 2014; pp. 155–157. [Google Scholar] [CrossRef]
- Afzal, A.; Habib, A.; Ulhasan, I.; Shahid, M.; Rehman, A. Antireflective self-cleaning TiO2 coatings for solar energy harvesting applications. Front. Mater. 2021, 8, 205. [Google Scholar] [CrossRef]
- Szabó, G.; Volentiru, E.; Hórvölgyi, Z.; Mureşan, L.M. Protective TiO2 coatings prepared by sol-gel method on zinc. Studia UBB Chem. 2015, 60, 225–235. [Google Scholar]
- Hamidon, S.N.N.A.; Nawabjan, A.; Abdullah, A.S.; Hussin, S.M. Hydrophobic sol-gel based self-cleaning coating for photovoltaic panels. In ECCE2019: Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; Volume 632, pp. 753–765. [Google Scholar]
- Adak, D.; Ghosh, S.; Chakrabarty, P.; Mondal, A.; Saha, H.; Mukherjee, R.; Bhattacharyya, R. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications. Sol. Energy 2017, 155, 410–418. [Google Scholar] [CrossRef]
- Baranyai, R.; Detrich, Á.; Volentiru, E.; Hórvölgyi, Z. Preparation and characterization of ZnO and TiO2 sol-gel thin films deposited by dip coating. Hung. J. Ind. Chem. 2009, 37, 131–137. [Google Scholar] [CrossRef]
- Adak, D.; Bhattacharyya, R.; Barshilia, H.C. A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices. Renew. Sustain. Energy Rev. 2022, 159, 112145. [Google Scholar] [CrossRef]
- Zhong, H.; Hu, Y.; Wang, Y.; Yang, H. TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels. Appl. Energy 2017, 204, 932–938. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, G.-S.; Szabó, R.; Szabó, L. A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels. Energies 2022, 15, 6558. https://doi.org/10.3390/en15186558
Szabó G-S, Szabó R, Szabó L. A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels. Energies. 2022; 15(18):6558. https://doi.org/10.3390/en15186558
Chicago/Turabian StyleSzabó, Gabriella-Stefánia, Róbert Szabó, and Loránd Szabó. 2022. "A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels" Energies 15, no. 18: 6558. https://doi.org/10.3390/en15186558
APA StyleSzabó, G.-S., Szabó, R., & Szabó, L. (2022). A Review of the Mitigating Methods against the Energy Conversion Decrease in Solar Panels. Energies, 15(18), 6558. https://doi.org/10.3390/en15186558