Worldwide Research Trends on Optimizing Wind Turbine Efficiency
1. Introduction
- Mini wind.
- Blade Element Momentum.
- Wind resource assessment.
- Blade diffusers.
- Mesoscale and microscale simulations.
2. Worldwide Research Trends on Optimizing Wind Turbine Efficiency
3. Most Cited Articles in Energies Journal on Optimizing Wind Turbine Efficiency
Author Contributions
Funding
Conflicts of Interest
References
- Castillo, A.D.; Jauregui-Correa, J.C.; Herbert, F.; Castillo-Villar, K.K.; Franco, J.A.; Hernandez-Escobedo, Q.; Perea-Moreno, A.-J.; Alcayde, A. The Effect of a Flexible Blade for Load Alleviation in Wind Turbines. Energies 2021, 14, 4988. [Google Scholar] [CrossRef]
- Haase, M.; Wulf, C.; Baumann, M.; Rösch, C.; Weil, M.; Zapp, P.; Naegler, T. Prospective Assessment of Energy Technologies: A Comprehensive Approach for Sustainability Assessment. Energy Sustain. Soc. 2022, 12, 20. [Google Scholar] [CrossRef]
- Yang, B.; Liu, B.; Zhou, H.; Wang, J.; Yao, W.; Wu, S.; Shu, H.; Ren, Y. A Critical Survey of Technologies of Large Offshore Wind Farm Integration: Summary, Advances, and Perspectives. Prot. Control Mod. Power Syst. 2022, 7, 17. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Li, Z. The Projection of Canadian Wind Energy Potential in Future Scenarios Using a Convection-Permitting Regional Climate Model. Energy Rep. 2022, 8, 7176–7187. [Google Scholar] [CrossRef]
- Niyomtham, L.; Waewsak, J.; Kongruang, C.; Chiwamongkhonkarn, S.; Chancham, C.; Gagnon, Y. Wind Power Generation and Appropriate Feed-in-Tariff under Limited Wind Resource in Central Thailand. Energy Rep. 2022, 8, 6220–6233. [Google Scholar] [CrossRef]
- Sang, S.; Wen, H.; Cao, A.X.; Du, X.R.; Zhu, X.; Shi, Q.; Qiu, C.H. Dynamic Modification Method for BEM of Wind Turbine Considering the Joint Action of Installation Angle and Structural Pendulum Motion. Ocean. Eng. 2020, 215, 107528. [Google Scholar] [CrossRef]
- Kavari, G.; Tahani, M.; Mirhosseini, M. Wind Shear Effect on Aerodynamic Performance and Energy Production of Horizontal Axis Wind Turbines with Developing Blade Element Momentum Theory. J. Clean. Prod. 2019, 219, 368–376. [Google Scholar] [CrossRef]
- Oukassou, K.; Mouhsine, S.E.; Hajjaji, A.E.; Kharbouch, B. Comparison of the Power, Lift and Drag Coefficients of Wind Turbine Blade from Aerodynamics Characteristics of Naca0012 and Naca2412. Procedia Manuf. 2019, 32, 983–990. [Google Scholar] [CrossRef]
- Yen, S.-C.; Liu, W.-S.; San, K.-C.; Wang, W.-F. Design of Wind-Turbine Blades for Improving Aerodynamic Performance Using Hybrid Blades. Ocean. Eng. 2021, 227, 108889. [Google Scholar] [CrossRef]
- Hasham Ali, M.; Nawazish Mehdi, S.; Naik, M.T. Comparative Analysis of Low Velocity Vertical Axis Wind Turbine NACA Blades at Different Attacking Angles in CFD. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review. Energies 2018, 11, 506. [Google Scholar] [CrossRef]
- Schubel, P.J.; Crossley, R.J. Wind Turbine Blade Design. Energies 2012, 5, 3425–3449. [Google Scholar] [CrossRef]
- Hsiao, F.-B.; Bai, C.-J.; Chong, W.-T. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods. Energies 2013, 6, 2784–2803. [Google Scholar] [CrossRef]
- Tran, T.; Kim, D.; Song, J. Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion. Energies 2014, 7, 5011–5026. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, W.; Zhao, X.L.; Xu, J.Z. Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading. Energies 2014, 7, 2274–2297. [Google Scholar] [CrossRef]
- Masters, I.; Williams, A.; Croft, T.N.; Togneri, M.; Edmunds, M.; Zangiabadi, E.; Fairley, I.; Karunarathna, H. A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis. Energies 2015, 8, 7833–7853. [Google Scholar] [CrossRef]
- Gómez Muñoz, C.Q.; García Márquez, F.P. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines. Energies 2016, 9, 40. [Google Scholar] [CrossRef]
- Nielsen, J.S.; Sørensen, J.D. Bayesian Estimation of Remaining Useful Life for Wind Turbine Blades. Energies 2017, 10, 664. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ansoategui, I.; Uriarte, I. Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices. Energies 2017, 10, 742. [Google Scholar] [CrossRef]
- Schramm, M.; Rahimi, H.; Stoevesandt, B.; Tangager, K. The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations. Energies 2017, 10, 1420. [Google Scholar] [CrossRef] [Green Version]
- Arcos Jiménez, A.; Gómez Muñoz, C.Q.; García Márquez, F.P. Machine Learning for Wind Turbine Blades Maintenance Management. Energies 2018, 11, 13. [Google Scholar] [CrossRef] [Green Version]
Cluster | Color | Main Keywords | Topic |
---|---|---|---|
1 | Red | Wind turbine blades, finite element method, fatigue of materials, fatigue testing, composite materials, stress analysis, structural analysis, structural components. | Structural analysis of wind turbines blades |
2 | Green | Aerodinamics, computational fluid dynamics, wind tunnels, airfoils, Reynolds number, turbulence models, surface roughness, vorticity. | Aerodynamic performance of wind turbines |
3 | Blue | Offshore wind turbines, dynamic response, floating wind turbines, fluid structure interaction, thin walled structures, aeroelastic stability, aeroelasticity, vibration analysis. | Offshore wind turbines |
4 | Yellow | Wind, wind energy, wind power, wind speed, energy efficiency, energy productions, electricity generation, energy policy. | Wind energy |
5 | Purple | Electric discharges, fem, lightning, lightning protection, lightning protection systems, light strikes. | Protections in wind turbines |
Country | Number of Documents |
---|---|
China | 45 |
Denmark | 18 |
United Kingdom | 12 |
South Korea | 11 |
United States | 9 |
Canada | 7 |
Germany | 7 |
Spain | 7 |
Japan | 6 |
Poland | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcayde, A.; Hernandez-Escobedo, Q.; Muñoz-Rodríguez, D.; Perea-Moreno, A.-J. Worldwide Research Trends on Optimizing Wind Turbine Efficiency. Energies 2022, 15, 6559. https://doi.org/10.3390/en15186559
Alcayde A, Hernandez-Escobedo Q, Muñoz-Rodríguez D, Perea-Moreno A-J. Worldwide Research Trends on Optimizing Wind Turbine Efficiency. Energies. 2022; 15(18):6559. https://doi.org/10.3390/en15186559
Chicago/Turabian StyleAlcayde, Alfredo, Quetzalcoatl Hernandez-Escobedo, David Muñoz-Rodríguez, and Alberto-Jesus Perea-Moreno. 2022. "Worldwide Research Trends on Optimizing Wind Turbine Efficiency" Energies 15, no. 18: 6559. https://doi.org/10.3390/en15186559
APA StyleAlcayde, A., Hernandez-Escobedo, Q., Muñoz-Rodríguez, D., & Perea-Moreno, A.-J. (2022). Worldwide Research Trends on Optimizing Wind Turbine Efficiency. Energies, 15(18), 6559. https://doi.org/10.3390/en15186559