Analysis of Convection Phenomenon in Enclosure Utilizing Nanofluids with Baffle Effects
Abstract
:1. Introduction
2. Mathematical Modelling
2.1. Governing Equations
2.2. Nusselt Number
2.3. Stream Function
2.4. Boundary Conditions
2.5. Solution Procedure
2.6. Model Validation
3. Results and Discussion
3.1. Effect of Rayleigh Number
3.2. Effect of Baffle Inclination Angle
3.3. Effect Thermal Conductivity Ratio
4. Conclusions
- A significant effect was observed while raising the value of the Rayleigh number on both the streamlines and isothermal patterns on the average Nusselt number. This shows the improvement in the rate of heat distribution, where the nanofluid effect is greater than that of the pure fluid.
- Thermal performance was significantly influenced by the baffle’s inclination angle, flow behavior, and on the average Nusselt number. The heat transfer was improved for the angle closure to 30. The maximum value of the stream function occurred for the case of nanofluid at , which is equal to whereas they decreased when while for the minimum stream function Ψ decreased to 9.84. For the critical angle at , the baffle had an excellent barrier effect on the flow and caused separate cells in the region on both sides.
- The parameter of the left wall remarkably influences streamlines, isothermal patterns, and the average Nusselt number. The increase in the raises the conductivity of the solid wall so that the heat transmitted across the thick wall increases and the temperature gradients pass the solid–fluid interface. Therefore, it can be seen that the thermal conductivity ratio acts as a control parameter that impacts the temperature profile within the enclosure. Moreover, the maximum stream function value was attained for all nanoparticle concentration values.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Cp | Specific heat (KJ/kg.K) |
D | Dimensionless wall thickness |
g | Gravitational acceleration (m/s2) |
k | Thermal conductivity (W/m·K) |
L | Enclosure length (m) |
Nu | Nusselt number |
P | Dimensionless pressure |
Pr | Prandtl number |
Ra | Rayleigh number |
T | Dimensional temperature |
U | Dimensionless velocity component X-direction |
V | Dimensionless velocity component Y-direction |
X | Dimensionless-coordinates |
Y | Dimensionless-coordinates |
Greek symbols | |
α | thermal diffusivity (m2/s) |
β | thermal expansion coefficient (1/T) |
µ | Dynamic viscosity (kg·s/m) |
θ | Dimensionless temperature |
Ψ | Absolute stream function |
Subscripts | |
c | cold |
h | hot |
loc | local |
References
- Andrzejczyk, R.; Muszynski, T. An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger. Appl. Therm. Eng. 2018, 136, 237–251. [Google Scholar] [CrossRef]
- Chen, H.-T.; Chang, Y.-L.; Lin, P.-Y.; Chiu, Y.-J.; Chang, J.-R. Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters. Int. J. Heat Mass Transf. 2017, 118, 931–947. [Google Scholar] [CrossRef]
- Abdulsahib, A.D.; Al-Farhany, K. Numerical Investigation of the Nanofluid Mixed Convection on Two Layers Enclosure with Rotating Cylinder: High Darcy Number Effects; Shafik, S.S., Roomi, A.B., Sharrad, F.I., Eds.; IOP Publishing Ltd.: London, UK, 2020. [Google Scholar]
- Olayemi, O.A.; Khaled, A.-F.; Temitope, O.J.; Victor, O.O.; Odetunde, C.B.; Adegun, I.K. Parametric study of natural convection heat transfer from an inclined rectangular cylinder embedded in a square enclosure. Aust. J. Mech. Eng. 2021, 1–14. [Google Scholar] [CrossRef]
- Mathew, V.; Hotta, T.K. Numerical investigation on optimal arrangement of IC chips mounted on a SMPS board cooled under mixed convection. Therm. Sci. Eng. Prog. 2018, 7, 221–229. [Google Scholar] [CrossRef]
- Hadavand, M.; Yousefzadeh, S.; Akbari, O.A.; Pourfattah, F.; Nguyen, H.; Asadi, A. A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip. Appl. Therm. Eng. 2019, 162, 114298. [Google Scholar] [CrossRef]
- Mathew, V.K.; Hotta, T.K. Role of PCM based mini-channels for the cooling of multiple protruding IC chips on the SMPS board—A numerical study. J. Energy Storage 2019, 26, 100917. [Google Scholar] [CrossRef]
- Abdulsahib, A.D.; Al-Farhany, K. Review of the Effects of Stationary/Rotating Cylinder in a Cavity on the Convection Heat Transfer in Porous Media with/without Nanofluid. Math. Model. Eng. Probl. 2021, 8, 356–364. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Al-Muhja, B.; Ali, F.; Khan, U.; Zaib, A.; Raizah, Z.; Galal, A.M. The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature. Molecules 2022, 27, 4445. [Google Scholar] [CrossRef]
- Edalatpour, M.; Solano, J.P. Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection. Int. J. Therm. Sci. 2017, 118, 397–409. [Google Scholar] [CrossRef]
- Xiao, C.; Liao, Q.; Fu, Q.; Huang, Y.; Xia, A.; Chen, H.; Zhu, X. Numerical investigation of laminar mixed convection of microalgae slurry flowing in a solar collector. Appl. Therm. Eng. 2020, 175, 115366. [Google Scholar] [CrossRef]
- Laouer, A.; Al-Farhany, K.; Al-Dawody, M.F.; Hashem, A.L. A numerical study of phase change material melting enhancement in a horizontal rectangular enclosure with vertical triple fins. Int. Commun. Heat Mass Transf. 2022, 137. [Google Scholar] [CrossRef]
- Laouer, A.; Al-Farhany, K. Melting of nano-enhanced phase change material in a cavity heated sinusoidal from below: Numerical study using lattice Boltzmann method. Heat Transf. 2022, 51, 5952–5970. [Google Scholar] [CrossRef]
- Shin, D.-H.; Kim, C.S.; Park, G.-C.; Cho, H.K. Experimental analysis on mixed convection in reactor cavity cooling system of HTGR for hydrogen production. Int. J. Hydrogen Energy 2017, 42, 22046–22053. [Google Scholar] [CrossRef]
- Kasam, A.; Lee, J.I.; Shwageraus, E. Numerical study of heat transfer in ascending mixed convection with internal heat generation. Ann. Nucl. Energy 2019, 133, 138–144. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Abdulsahib, A.D. Study of mixed convection in two layers of saturated porous medium and nanofluid with rotating circular cylinder. Prog. Nucl. Energy 2021, 135, 103723. [Google Scholar] [CrossRef]
- Qi, C.; Cui, X.; Liu, Y.; Yang, Z.; Huang, C. Natural Convection Heat Transfer of Liquid Metal Gallium Nanofluids in a Rectangular Enclosure. Heat Transfer—Asian Res. 2015, 46, 1–17. [Google Scholar] [CrossRef]
- Al-Chlaihawi, K.K.; Alaydamee, H.H.; Faisal, A.E.; Al-Farhany, K.; Alomari, M.A. Newtonian and non-Newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: A review. Heat Transf. 2021, 51, 1725–1745. [Google Scholar] [CrossRef]
- De Vahl Davis, G. Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- Sankar, M.; Do, Y. Numerical simulation of free convection heat transfer in a vertical annular cavity with discrete heating. Int. Commun. Heat Mass Transf. 2010, 37, 600–606. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H.F.; Koca, A. Effects of inclination angle on conduction—Natural convection in divided enclosures filled with different fluids. Int. Commun. Heat Mass Transf. 2010, 37, 182–191. [Google Scholar] [CrossRef]
- Sheikhzadeh, G.A.; Arefmanesh, A.; Kheirkhah, M.; Abdollahi, R. Natural convection of Cu–water nanofluid in a cavity with partially active side walls. Eur. J. Mech. B/Fluids 2011, 30, 166–176. [Google Scholar] [CrossRef]
- Ternik, P.; Rudolf, R. Heat transfer enhancement for natural convection flow of water-based nanofluids in a square enclosure. Int. J. Simul. Model. 2012, 11, 29–39. [Google Scholar] [CrossRef]
- Basak, T.; Chamkha, A.J. Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 2012, 55, 5526–5543. [Google Scholar] [CrossRef]
- Cianfrini, M.; Corcione, M.; Quintino, A.; Marta, C.; Massimo, C.; Alessandro, Q. Natural convection in square enclosures differentially heated at sides using alumina-water nanofluids with temperature-dependent physical properties. Therm. Sci. 2015, 19, 591–608. [Google Scholar] [CrossRef]
- Redouane, F.; Jamshed, W.; Devi, S.S.U.; Amine, B.M.; Safdar, R.; Al-Farhany, K.; Eid, M.R.; Nisar, K.S.; Abdel-Aty, A.-H.; Yahia, I.S. Influence of entropy on Brinkman–Forchheimer model of MHD hybrid nanofluid flowing in enclosure containing rotating cylinder and undulating porous stratum. Sci. Rep. 2021, 11, 1–26. [Google Scholar] [CrossRef]
- Alomari, M.A.; Al-Farhany, K.; Hashem, A.L.; Al-Dawody, M.F.; Redouane, F.; Olayemi, O.A. Numerical Study of MHD Natural Convection in Trapezoidal Enclosure Filled with (50%MgO-50%Ag/Water) Hybrid Nanofluid: Heated Sinusoidal from Below. Int. J. Heat Technol. 2021, 39, 1271–1279. [Google Scholar] [CrossRef]
- Ghassemi, M.; Pirmohammadi, M.; Sheikhzadeh, A. A Numerical Study of Natural Convection in a Tilted Cavity with Two Baffles Attached to its Isothermal Walls. WSEAS Trans. Fluid Mech. 2007, 2, 61–68. [Google Scholar]
- Sheikhzadeh, G.A.; Pirmohammadi, M.; Ghassemi, M. A Numerical Study of Natural Convection in a Cavity with Two Fins Attached to Its Vertical Walls; American Society of Mechanical Engineers: New York, NY, USA, 2007; pp. 453–460. [Google Scholar]
- Elatar, A.; Teamah, M.A.; Hassab, M.A. Numerical study of laminar natural convection inside square enclosure with single horizontal fin. Int. J. Therm. Sci. 2016, 99, 41–51. [Google Scholar] [CrossRef]
- Torabi, M.; Keyhani, A.; Peterson, G. A comprehensive investigation of natural convection inside a partially differentially heated cavity with a thin fin using two-set lattice Boltzmann distribution functions. Int. J. Heat Mass Transf. 2017, 115, 264–277. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Abdulkadhim, A.; Hamzah, H.K.; Ali, F.H.; Chamkha, A. MHD effects on natural convection in a U-shaped enclosure filled with nanofluid-saturated porous media with two baffles. Prog. Nucl. Energy 2022, 145, 104136. [Google Scholar] [CrossRef]
- Mahmoudi, A.H.; Shahi, M.; Raouf, A.H.; Ghasemian, A. Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 2010, 37, 1135–1141. [Google Scholar] [CrossRef]
- Habibzadeh, A.; Sayehvand, H.; Mekanik, A. Numerical Study of Natural Convection in a Partitioned Square Cavity Filled with Nanofluid. Int. J. Chem. Eng. Appl. 2011, 261–267. [Google Scholar] [CrossRef]
- Sayehvand, H.; Habibzadeh, A.; Mekanik, A. CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid. Int. J. Nano Dimens. 2012, 2, 191–200. [Google Scholar]
- Naoufal, Y.; Zaydan, M.; Rachid, S. Numerical study of natural convection in a square cavity with partitions utilizing Cu-Water nanofluid. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 10354–10367. [Google Scholar]
- Selimefendigil, F.; Öztop, H.F. Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J. Mol. Liq. 2016, 216, 67–77. [Google Scholar] [CrossRef]
- Costa, V.; Oliveira, M.; Sousa, A. Control of laminar natural convection in differentially heated square enclosures using solid inserts at the corners. Int. J. Heat Mass Transf. 2003, 46, 3529–3537. [Google Scholar] [CrossRef]
- Basak, T.; Anandalakshmi, R.; Singh, A.K. Heatline analysis on thermal management with conjugate natural convection in a square cavity. Chem. Eng. Sci. 2013, 93, 67–90. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Ismael, M.A. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int. J. Therm. Sci. 2013, 67, 135–151. [Google Scholar] [CrossRef]
- Abdulkadhim, A.; Abed, A.M.; Al-Farhany, K. Computational investigation of conjugate heat transfer in cavity filled with saturated porous media. Front. Heat Mass Transf. 2018, 11, 12. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Abdulkadhim, A. Numerical investigation of conjugate natural convection heat transfer in a square porous cavity heated partially from left sidewall. Int. J. Heat Technol. 2018, 36, 237–244. [Google Scholar] [CrossRef]
- Ishrat Zahan, M.A.A. Effect of conjugate heat transfer on flow of nanofluid in a rectangular enclosure. Int. J. Heat Technol. 2018, 36, 8. [Google Scholar]
- Menni, Y.; Chamkha, A.; Zidani, C.; Benyoucef, B. Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. Math. Model. Eng. Probl. 2019, 6, 52–60. [Google Scholar] [CrossRef]
- Menni, Y.; Chamkha, A.; Zidani, C.; Benyoucef, B. Heat and nanofluid transfer in baffled channels of different outlet models. Math. Model. Eng. Probl. 2019, 6, 21–28. [Google Scholar] [CrossRef]
- Ghachem, K.; Hassen, W.; Maatki, C.; Kolsi, L.; Al-Rashed, A.; Borjini, M. Numerical simulation of 3D natural convection and entropy generation in a cubic cavity equipped with an adiabatic baffle. Int. J. Heat Technol. 2018, 36, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Keramat, F.; Dehghan, P.; Mofarahi, M.; Lee, C.-H. Numerical analysis of natural convection of alumina–water nanofluid in H-shaped enclosure with a V-shaped baffle. J. Taiwan Inst. Chem. Eng. 2020, 111, 63–72. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Al-Dawody, M.F.; Hamzah, D.A.; Al-Kouz, W.; Said, Z. Numerical investigation of natural convection on Al2O3–Water porous enclosure partially heated with two fins attached to its hot wall: Under the MHD effects. Appl. Nanosci. 2021, 1–18. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Al-Chlaihawi, K.K.; Al-Dawody, M.F.; Biswas, N.; Chamkha, A.J. Effects of fins on magnetohydrodynamic conjugate natural convection in a nanofluid-saturated porous inclined enclosure. Int. Commun. Heat Mass Transf. 2021, 126, 105413. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Alomari, M.A.; Saleem, K.B.; Al-Kouz, W.; Biswas, N. Numerical investigation of double-diffusive natural convection in a staggered cavity with two triangular obstacles. Eur. Phys. J. Plus 2021, 136, 1–24. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Medebber, M.A.; Elkotb, M.A.; Abderrahmane, A.; Aimad, K.; Al-Farhany, K.; Jamshed, W.; Moria, H.; Aldawi, F.; Saleel, C.A.; et al. Galerkin finite element analysis of Darcy–Brinkman–Forchheimer natural convective flow in conical annular enclosure with discrete heat sources. Energy Rep. 2021, 7, 6172–6181. [Google Scholar] [CrossRef]
- Alsabery, A.; Chamkha, A.; Saleh, H.; Hashim, I. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int. J. Heat Mass Transf. 2016, 100, 835–850. [Google Scholar] [CrossRef]
- Abedini, A.; Armaghani, T.; Chamkha, A.J. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J. Therm. Anal. 2018, 135, 685–695. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Oztop, H.F. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow 2009, 30, 669–678. [Google Scholar] [CrossRef]
- Ben-Nakhi, A.; Chamkha, A.J. Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer. Heat Transfer Part A Appl. 2006, 50, 381–399. [Google Scholar] [CrossRef]
Properties | Pure Water | Cu |
---|---|---|
Cp (J/kg. K) | 4179 | 385 |
ρ (kg/m3) | 997.1 | 8933 |
µ (Pa·s) | 1.003 × 10−3 | ----- |
k (W/m. K) | 0.613 | 401 |
β (1/K) | 21 × 10−5 | 1.67 × 10−5 |
Mesh | Mesh Elements | Average Nusselt Number |
---|---|---|
Mesh1 | 1640 | 3.947593 |
Mesh2 | 2392 | 3.944723 |
Mesh3 | 3810 | 3.943674 |
Mesh4 | 9570 | 3.938316 |
Mesh5 | 24,982 | 3.938331 |
Mesh6 | 37,242 | 3.938329 |
Rayleigh Number (Ra) | (ϕ) | Present Study | Basak and Chamkha [24] |
---|---|---|---|
103 | 0 | 1.11761 | 1.11 |
0.1 | 1.38627 | 1.38 | |
0.2 | 1.76782 | 1.768 | |
104 | 0 | 2.27573 | 2.276 |
0.1 | 2.47280 | 2.477 | |
0.2 | 2.6233 | 2.624 | |
105 | 0 | 4.74135 | 4.74 |
0.1 | 5.24220 | 5.243 | |
0.2 | 5.64994 | 5.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Farhany, K.; Al-Muhja, B.; Loganathan, K.; Periyasamy, U.; Ali, F.; Sarris, I.E. Analysis of Convection Phenomenon in Enclosure Utilizing Nanofluids with Baffle Effects. Energies 2022, 15, 6615. https://doi.org/10.3390/en15186615
Al-Farhany K, Al-Muhja B, Loganathan K, Periyasamy U, Ali F, Sarris IE. Analysis of Convection Phenomenon in Enclosure Utilizing Nanofluids with Baffle Effects. Energies. 2022; 15(18):6615. https://doi.org/10.3390/en15186615
Chicago/Turabian StyleAl-Farhany, Khaled, Barik Al-Muhja, Karuppusamy Loganathan, Umadevi Periyasamy, Farhan Ali, and Ioannis E. Sarris. 2022. "Analysis of Convection Phenomenon in Enclosure Utilizing Nanofluids with Baffle Effects" Energies 15, no. 18: 6615. https://doi.org/10.3390/en15186615
APA StyleAl-Farhany, K., Al-Muhja, B., Loganathan, K., Periyasamy, U., Ali, F., & Sarris, I. E. (2022). Analysis of Convection Phenomenon in Enclosure Utilizing Nanofluids with Baffle Effects. Energies, 15(18), 6615. https://doi.org/10.3390/en15186615