Wind Power Generation Forecast Based on Multi-Step Informer Network
Abstract
:1. Introduction
Methods Classification | References | Training Algorithm | Data Type | Accuracy |
---|---|---|---|---|
Physical methods | J. Hu et al., 2020 [6] | MCEEMDAN-GOA-QRNN-II | DataA: 1 h DataB: 2 h | DataA:RMSE = 0.8065 MSE = 0.6505 DataB:RMSE = 1.1079 MSE = 1.2274 |
Statistical methods | Q. Han et al., 2017 [7] | ARMA, NP, AI/ML, HAN, HNA et al., | 1 h | MREMAX = 0.1396 RMSEMAX = 0.1367 |
F. Zhang et al., 2021 [8] | ARDA | Data I: 400 s Data II: 1000 s | Data I: RMSE = 8.11–14.9 (KW) Data II: RMSE = 93.32–208.19 (KW) | |
Z. Zheng et al., 2019 [9] | A Kalman filter-based bottom-up approach | 24 h | SMAPE = 0.151 | |
Artificial intelligence | C. Yildiz et al., 2020 [23] | An improved residual-based deep Convolutional Neural Network (CNN) | 1 year | RMSE = 0.0247–0.1362 |
Z. Lin et al., 2020 [24] | Based on high-frequency SCADA data and deep learning neural network | 1 month | RMSE = 545.28 (KW) | |
F. Shahid et al., 2021 [25] | GLSTM | 12 h | MSE = 0.00924 MAE = 0.07271 MSE = 0.09615 | |
G. An et al., 2021 [27] | PSO-ELM | 1 year | MSE = 4549 (KW) RMSE = 67.4460 (KW) | |
Z. Sun et al., 2020 [28] | Based on VMD Decomposition, ConvLSTM Networks and Error Analysis | 7 months | RMSE15min = 1210.05 (KW) RMSE20min = 1889.2 (KW) RMSE30min = 2345.89 (KW) |
- 1.
- The LSTM has the advantages of sequential learning rather than parallel learning. Hence, there is still room for further improvement in learning speed.
- 2.
- The possibility of improving the accuracy of the wind power generation forecast with the continuous proposal of the new neural networks.
- 3.
- There are fewer studies that integrate physical processes into wind power generation forecast.
- 1.
- The MSIN improves forecast accuracy by 29% compared to Informer network. The potential forecast relationship between input sequence and output sequence in wind power long time series is verified.
- 2.
- The MSIN has the ability of parallel learning and accelerates learning speed further.
- 3.
- The forecast results are corrected by the wind speed and air pressure that are described by combining the wind power generation physical processes and dynamic pressure model. The wind speed and air pressure related to the dynamic pressure model can improve the prediction accuracy of wind power generation.
2. Dynamic Pressure Model
2.1. Dynamic Pressure Model-Wind Pressure
2.2. Dynamic Pressure Model-Wind Power Density
3. Multi-Step Informer Network
3.1. Informer Network
3.2. Multi-Step Informer Network
4. Case Study
4.1. Hyperparameter Regulation
4.2. Analysis of Forecast Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Atten | Attention |
BidLSTM | Bidirectional Long Short-Term Memory |
ConvLSTM | Convolution Long Short-Term Memory |
LSTM | Long Short Term Memory |
MSIN | Multi-step Informer network |
MAE | Mean absoluter error |
MSE | Mean square error |
MHSA | Mmulti-head self-attention |
RMSE | Root mean square error |
map of input sequence | |
Betz power coefficient | |
c | sampling factor |
d | represent the length of |
the basic operation of the Multi-head probspare self-attention | |
atmospheric gas constant | |
g | Gravitational acceleration |
h | the head number of multi-head attention |
a single of key vectors | |
K | key vectors |
length of query vectors | |
length of key vectors | |
P | pressure |
wind power | |
air density | |
Q | query vectors |
a sparse matrix of the same size of | |
a single of query vectors | |
r | standard state |
S | rotor area |
temperature | |
wind speed | |
V | value vectors |
a single of value vectors | |
wind pressure | |
matrix of q | |
matrix of k | |
matrix of v | |
start flag | |
target placeholder |
References
- Shahid, F.; Zameer, A.; Mehmood, A.; Raja, M.A.Z. A novel wavenets long short term memory paradigm for wind power prediction. Appl. Energy 2020, 269, 115098. [Google Scholar] [CrossRef]
- Gazafroudi, A.S. Assessing the Impact of Load and Renewable Energies’ Uncertainty on a Hybrid System. Int. J. Energy Power Eng. 2016, 5, 1. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Y.; Wang, J. Short-term wind speed forecasting using a hybrid model. Energy 2017, 119, 561–577. [Google Scholar] [CrossRef]
- Karakuş, O.; Kuruoğlu, E.E.; Altınkaya, M.A. Altinkaya, One-day ahead wind speed/power prediction based on polynomial autoregressive model. IET Renew. Power Gener. Res. 2017, 11, 1430–1439. [Google Scholar] [CrossRef]
- Barbounis, T.G.; Theocharis, J.B.; Alexiadis, M.C.; Dokopoulos, P.S. Dokopoulos, Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans. Energy Convers. 2006, 21, 273–284. [Google Scholar] [CrossRef]
- Hu, J.; Heng, J.; Wen, J.; Zhao, W. Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm. Renew. Energy 2020, 162, 1208–1226. [Google Scholar] [CrossRef]
- Han, Q.; Meng, F.; Hu, T.; Chu, F. Non-parametric hybrid models for wind speed forecasting. Energy Convers. Manag. 2017, 148, 554–568. [Google Scholar] [CrossRef]
- Zhang, F.; Li, P.C.; Gao, L.; Liu, Y.Q.; Ren, X.Y. Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting. Renew. Energy 2021, 169, 129–143. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, H.; Luo, X. A Kalman filter-based bottom-up approach for household short-term load forecast. Appl. Energy 2019, 250, 882–894. [Google Scholar] [CrossRef]
- Rayi, V.K.; Mishra, S.P.; Naik, J.; Dash, P.K. Adaptive VMD based optimized deep learning mixed kernel ELM autoencoder for single and multistep wind power forecasting. Energy 2022, 224, 122585. [Google Scholar] [CrossRef]
- Sharifian, A.; Ghadi, M.J.; Ghavidel, S.; Li, L.; Zhang, J. A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data. Renew. Energy 2018, 120, 220–230. [Google Scholar] [CrossRef]
- Li, L.; Yin, X.L.; Jia, X.C.; Sobhani, B. Day ahead powerful probabilistic wind power forecast using combined intelligent structure and fuzzy clustering algorithm. Energy 2020, 192, 116498. [Google Scholar] [CrossRef]
- Liu, M.; Cao, Z.; Zhang, J.; Wang, L.; Huang, C.; Luo, X. Short-term wind speed forecasting based on the Jaya-SVM model. Int. J. Electr. Power Energy Syst. 2020, 121, 106056. [Google Scholar] [CrossRef]
- Wang, D.; Luo, H.; Grunder, O.; Lin, Y. Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction. Renew. Energy 2017, 113, 1345–1358. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, H.; Zhao, J.; Liu, T.; Zhu, T.; Zhang, K. Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew. Energy 2016, 99, 727–737. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.; Guo, Z.; Yang, W. Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting. Energy Convers. Manag. 2017, 27, 90–107. [Google Scholar] [CrossRef]
- Deo, R.C.; Ghorbani, M.A.; Samadianfard, S.; Maraseni, T.; Bilgili, M.; Biazar, M. Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data. Renew. Energy 2018, 116, 309–323. [Google Scholar] [CrossRef]
- Praveena, R.; Dhanalakshmi, K. Wind Power Forecasting in Short-Term using Fuzzy K-Means Clustering and Neural Network. In Proceedings of the of I2C2SW IEEE International Conference on Intelligent Computing and Communication for Smart World, Erode, India, 14–15 December 2018; pp. 336–339. [Google Scholar]
- Famoso, F.; Brusca, S.; Galvagno, A.; Messina, M.; Lanzafame, R. On the wake effect in wind farm power forecasting: A new data-driven approach. E3S Web Conf. 2020, 197, 08016. [Google Scholar] [CrossRef]
- Qian, Z.; Pei, Y.; Zareipour, H.; Chen, N. A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl. Energy 2018, 235, 939–953. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Zhang, J. Optimization scheme of wind energy prediction based on artificial intelligence. Environ. Sci. Pollut. Res 2021, 28, 39966–39981. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Wang, H.Z.; Wang, G.B.; Li, G.Q.; Peng, J.C.; Liu, Y.T. Deep belief network based deterministic and probabilistic wind speed forecasting approach. Appl. Energy 2016, 182, 80–93. [Google Scholar] [CrossRef]
- Yildiz, C.; Acikgoz, H.; Korkmaz, D.; Budak, U. An improved residual-based convolutional neural network for very short-term wind power forecasting. Energy Convers. Manag. 2021, 228, 113731. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 2020, 201, 117693. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. A novel genetic LSTM model for wind power forecast. Energy 2021, 223, 120069. [Google Scholar] [CrossRef]
- Pourdaryaei, A.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S. Short-Term Electricity Price Forecasting via Hybrid Backtracking Search Algorithm and ANFIS Approach. IEEE Access 2019, 7, 77674–77691. [Google Scholar] [CrossRef]
- An, G.; Jiang, Z.; Cao, X.; Liang, Y.; Zhao, Y.; Li, Z. Short-Term Wind Power Prediction Based on Particle Swarm Optimization-Extreme Learning Machine Model Combined with Adaboost Algorithm. IEEE Access 2021, 9, 94040–94052. [Google Scholar] [CrossRef]
- Banik, A.; Behera, C.; Sarathkumar, T.V.; Goswami, A.K. Uncertain wind power forecasting using LSTM-based prediction interval. IET Renew. Power Gener. 2020, 14, 2657–2667. [Google Scholar] [CrossRef]
- Shabbir, N.; Kütt, L.; Jawad, M.; Husev, O.; Ur Rehman, A.; Gardezi, A.A.; Shafiq, M.; Choi, J.-G. Short-Term Wind Energy Forecasting Using Deep Learning-Based Predictive Analytics. Comput. Mater. Contin. 2022, 72, 1017–1033. [Google Scholar] [CrossRef]
- Wu, Q.; Guan, F.; Lv, C.; Huang, Y. Ultra-short-term multi-step wind power forecasting based on CNN-LSTM. IET Renew. Power Gener 2021, 15, 1019–1029. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, M. Short-Term Wind Power Forecasting Based on VMD Decomposition, ConvLSTM Networks and Error Analysis. IEEE Access 2020, 8, 134422–134434. [Google Scholar] [CrossRef]
- Zhen, H.; Niu, D.; Yu, M.; Wang, K.; Liang, Y.; Xu, X. A hybrid deep learning model and comparison for wind power forecasting considering temporal-spatial feature extraction. Sustainability 2020, 12, 9490. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y. Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models. Renew. Energy 2021, 177, 101–112. [Google Scholar] [CrossRef]
- Chen, G.; Li, L.; Zhang, Z.; Li, S. Short-term wind speed forecasting with principle-subordinate predictor based on Conv-LSTM and improved BPNN. IEEE Access 2020, 8, 67955–67973. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Keynia, F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. Energy Convers. Manag. 2020, 213, 112824. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manag. 2018, 159, 54–64. [Google Scholar] [CrossRef]
- Furfari(tony), F.A. Attention Is All You Need. IEEE Ind. Appl. Manag. 2002, 8, 8–15. [Google Scholar]
- Fu, X.; Gao, F.; Wu, J.; Wei, X.; Duan, F. Spatiotemporal attention networks for wind power forecasting. In 2019 International Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 149–154. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI 2021), Virtually, 2–9 February 2020; Volume 12B, pp. 11106–11115. [Google Scholar]
- Naser, M.Z. An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference. Autom. Constr. 2021, 129, 103821. [Google Scholar] [CrossRef]
- Rudin, C.; Chen, C.; Chen, Z.; Huang, H.; Semenova, L.; Zhong, C. Interpretable machine learning: Fundamental principles and 10 grand challenges. Stat. Surv. 2022, 16, 1–85. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D.; Laible, J. National and global wind resource assessment under six wind turbine installation scenarios. Energy Convers. Manag. 2018, 156, 403–415. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.J.; Liu, Z.Y. Study on the Maximum Entropy Principle applied to the annual wind speed probability distribution: A case study for observations of intertidal zone anemometer towers of Rudong in East China Sea. Appl. Energy 2013, 114, 931–938. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; Chan, P.W. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Appl. Energy 2015, 156, 362–373. [Google Scholar] [CrossRef]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89. [Google Scholar]
Season | DNN | LSTM | Informer | MSIN |
---|---|---|---|---|
Winter | 836.067 | 1043.567 | 602.245 | 459.397 |
Spring | 936.623 | 478.078 | 288.463 | 288.022 |
Summer | 667.646 | 482.656 | 291.008 | 182.564 |
Autumn | 1041.964 | 908.245 | 565.065 | 301.674 |
Average | 870.645 | 727.754 | 436.576 | 307.553 |
Season | DNN | LSTM | Informer | MSIN |
---|---|---|---|---|
Winter | 215.854 | 93.326 | 77.979 | 86.125 |
Spring | 106.542 | 162.979 | 78.472 | 53.361 |
Summer | 145.292 | 106.5 | 58.9375 | 16.869 |
Autumn | 315.569 | 185.271 | 31.01 | 30.43 |
Average | 195.814 | 137.019 | 61.600 | 41.701 |
Season | DNN | LSTM | Informer | MSIN |
---|---|---|---|---|
Winter | 699,736.410 | 1,087,969.965 | 362,914.479 | 211,170.611 |
Spring | 877,188.375 | 228,561.965 | 83,442.903 | 35,347.708 |
Summer | 481,942 | 232,731.292 | 85,198.674 | 33,485.438 |
Autumn | 1,085,352.875 | 826,097.854 | 319,239.757 | 161,493.194 |
Average | 786,054.915 | 593,840.269 | 212,698.953 | 110,374.238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Jiang, A. Wind Power Generation Forecast Based on Multi-Step Informer Network. Energies 2022, 15, 6642. https://doi.org/10.3390/en15186642
Huang X, Jiang A. Wind Power Generation Forecast Based on Multi-Step Informer Network. Energies. 2022; 15(18):6642. https://doi.org/10.3390/en15186642
Chicago/Turabian StyleHuang, Xiaohan, and Aihua Jiang. 2022. "Wind Power Generation Forecast Based on Multi-Step Informer Network" Energies 15, no. 18: 6642. https://doi.org/10.3390/en15186642
APA StyleHuang, X., & Jiang, A. (2022). Wind Power Generation Forecast Based on Multi-Step Informer Network. Energies, 15(18), 6642. https://doi.org/10.3390/en15186642