Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor
Abstract
:1. Introduction
2. The Model and Analysis of Rotor Slot Harmonics for Multiphase Induction Motors
2.1. The Analytical Model of RSHs for Multiphase IMs
2.2. The Effect of Skewed Slot Rotor on PSHs
3. Adaptive Online Extraction of PSHs from Stator Currents
3.1. The Online Parameter Updated Algorithm for the Adaptive Online Extraction Filter for PSHs
3.2. The Online Frequency Identification of PSHs and Verification
4. Experimental Results
4.1. Experiment Platform Setup
4.2. The PSH Extraction Results
4.3. Verification and Errors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levi, E. Multiphase Electric Machines for Variable-Speed Applications. IEEE Trans. Ind. Electron. 2008, 55, 1893–1909. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Zheng, X.; Yuan, X. Virtual Voltage Vector based Model Predictive Control for a Nine-phase Open-end Winding PMSM with a Common DC bus. IEEE Trans. Ind. Electron. 2022, 69, 5386–5397. [Google Scholar] [CrossRef]
- You, R.; Lu, X. Voltage Unbalance Compensation in Distribution Feeders using Soft Open Points. J. Mod. Power Syst. Clean Energy 2022, 10, 1000–1008. [Google Scholar] [CrossRef]
- Gonzalez-Prieto, A.; Aciego, J.J.; Gonzalez-Prieto, I.; Duran, M.J. Automatic Fault-Tolerant Control of Multiphase Induction Machines: A Game Changer. Electronics 2020, 9, 938. [Google Scholar] [CrossRef]
- Kellner, J.; Kaščák, S.; Ferková, Ž. Investigation of the Properties of a Five-Phase Induction Motor in the Introduction of New Fault-Tolerant Control. Appl. Sci. 2022, 12, 2249. [Google Scholar] [CrossRef]
- Li, X.; Xue, Z.; Zhang, L.; Hua, W. A low-complexity three-vector-based model predictive torque control for SPMSM. IEEE Trans. Power Electron. 2021, 36, 13002–13012. [Google Scholar] [CrossRef]
- Joksimović, G.; Levi, E.; Kajević, A.; Mezzarobba, M.; Tessarolo, A. Optimal Selection of Rotor Bar Number for Minimizing Torque and Current Pulsations Due to Rotor Slot Harmonics in Three-Phase Cage Induction Motors. IEEE Access 2020, 8, 228572–228585. [Google Scholar] [CrossRef]
- Frauman, P.; Burakov, A.; Arkkio, A. Effects of the Slot Harmonics on the Unbalanced Magnetic Pull in an Induction Motor with an Eccentric Rotor. IEEE Trans. Magn. 2007, 43, 3441–3444. [Google Scholar] [CrossRef]
- Bień, A.; Drabek, T.; Kara, D.; Kołacz, T. Reduction in the Cogging Torques in the DCEFSM Motor by Changing the Geometry of the Rotor Teeth. Energies 2022, 15, 2455. [Google Scholar] [CrossRef]
- Guo, L.; Xu, J.; Wu, S.; Xie, X.; Wang, H. Analysis and Design of Dual Three-Phase Fractional-Slot Permanent Magnet Motor with Low Space Harmonic. IEEE Trans. Magn. 2022, 58, 8100112. [Google Scholar] [CrossRef]
- Zhou, G.; Shen, J. Current Harmonics in Induction Machine with Closed-Slot Rotor. IEEE Trans. Ind. Appl. 2017, 53, 134–142. [Google Scholar] [CrossRef]
- Asad, B.; Vaimann, T.; Belahcen, A.; Kallaste, A.; Rassolkin, A.; Van Khang, H.; Ghahfarokhi, P.S.; Naseer, M.U.; Iqbal, M.N. The Modeling and Investigation of Slot Skews and Supply Imbalance on the Development of Principal Slotting Harmonics in Squirrel Cage Induction Machines. IEEE Access 2021, 9, 165932–165946. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.; Liu, G.; Zhai, F.; Eduku, S. Reduction of Torque Ripple Caused by Slot Harmonics in FSCW Spoke-Type FPM Motors by Assisted Poles. IEEE Trans. Ind. Electron. 2020, 67, 9613–9622. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; Zhao, H.; Wu, T. An Analytical Iron Loss Calculation Model of Inverter-Fed Induction Motors Considering Supply and Slot Harmonics. IEEE Trans. Ind. Electron. 2019, 66, 9194–9204. [Google Scholar] [CrossRef]
- Diarra, M.N.; Yao, Y.; Li, Z.; Niasse, M.; Li, Y.; Zhao, H. In-Situ Efficiency Estimation of Induction Motors Based on Quantum Particle Swarm Optimization-Trust Region Algorithm (QPSO-TRA). Energies 2022, 15, 4905. [Google Scholar] [CrossRef]
- Benouzza, N.; Boudinar, A.H.; Bendiabdellah, A.; Khodja, M. Slot harmonic frequency detection as a technique to improve stator current spectrum approach for broken rotor bars fault diagnosis. In Proceedings of the 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, Turkey, 2–4 September 2015; pp. 118–122. [Google Scholar] [CrossRef]
- Gao, Z.; Habetler, T.G.; Harley, R.G.; Colby, R.S. A Sensorless Rotor Temperature Estimator for Induction Machines Based on a Current Harmonic Spectral Estimation Scheme. IEEE Trans. Ind. Electron. 2008, 55, 407–416. [Google Scholar] [CrossRef]
- Ray, S.; Dey, D. Development of a Comprehensive Analytical Model of Induction Motor under Stator Intern Turn Faults Incorporating Rotor Slot Harmonics. IEEE Trans. Ind. Electron. 2022. [Google Scholar] [CrossRef]
- Degner, M.W.; Lorenz, R.D. Position estimation in induction machines utilizing rotor bar slot harmonics and carrier-frequency signal injection. IEEE Trans. Ind. Appl. 2000, 36, 736–742. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, X.; Tang, Y.; Hao, M. Cogging Torque Reduction in PMSM in Wide Temperature Range by Response Surface Methodology. Symmetry 2021, 13, 1877. [Google Scholar] [CrossRef]
- Park, J.-C.; Park, S.-H.; Kim, J.-H.; Lee, S.-G.; Lee, G.-H.; Lim, M.-S. Diagnosis and Robust Design Optimization of SPMSM Considering Back EMF and Cogging Torque due to Static Eccentricity. Energies 2021, 14, 2900. [Google Scholar] [CrossRef]
- Lee, C.-S.; Kim, H.-J. Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances. Energies 2022, 15, 2428. [Google Scholar] [CrossRef]
- Brescia, E.; Costantino, D.; Massenio, P.R.; Monopoli, V.G.; Cupertino, F.; Cascella, G.L. A Design Method for the Cogging Torque Minimization of Permanent Magnet Machines with a Segmented Stator Core Based on ANN Surrogate Models. Energies 2021, 14, 1880. [Google Scholar] [CrossRef]
- Palangar, M.F.; Mahmoudi, A.; Kahourzade, S.; Soong, W.L. Electromagnetic and Thermal Analysis of a Line-Start Permanent-Magnet Synchronous Motor. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 502–508. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, C.; Wu, X. The Analysis of Displacement Estimation Errors of Demodulation Type Self-sensing Active Magnetic Bearings. Proc. Chin. Soc. Electron. Eng. 2019, 10, 5876–5884. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X.; Yuan, X.; Wu, X. Low-Complexity Model-Predictive Control for a Nine-Phase Open-End Winding PMSM with Dead-Time Compensation. IEEE Trans. Ind. Electron. 2022, 37, 8895–8908. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
PN | Rated motor power | 8 kW |
m | Phase number | 9 |
fN | Rated power supply frequency | 50 Hz |
P | Pole pairs | 2 |
nN | Rated speed | 1477 r/min |
UN | Rated phase voltage | 85 V |
IN | Rated phase current | 12.87 A |
Z1 | Stator slot number | 72 |
Z2 | Rotor slot number | 54 |
β | Pitch ratio | 5/6 |
Speed n (rpm) | Torque (N·m) | f1 (Hz) | ft1− (Hz) | ft1+ (Hz) |
---|---|---|---|---|
239 | 5.2 | 8.3 | 208.4 | 225.1 |
342 | 4.9 | 11.7 | 296.8 | 320.2 |
440 | 6.0 | 15.0 | 381.7 | 411.7 |
538 | 7.0 | 18.3 | 466.6 | 503.3 |
636 | 8.3 | 21.6 | 551.2 | 594.6 |
832 | 10.5 | 28.3 | 721.1 | 777.8 |
1028 | 12.7 | 35.0 | 891.0 | 961.0 |
1396 | 16.5 | 48.3 | 1208.0 | 1304.6 |
Speed n (rpm) | Torque (N·m) | Z2n/15p (Hz) | ft1− + ft1− (Hz) | Relative Error(%) |
---|---|---|---|---|
239 | 5.2 | 430.2 | 433.5 | 0.77 |
342 | 4.9 | 615.6 | 617.0 | 0.23 |
440 | 6.0 | 792.0 | 793.4 | 0.18 |
538 | 7.0 | 968.4 | 969.9 | 0.15 |
636 | 8.3 | 1144.8 | 1145.8 | 0.09 |
832 | 10.5 | 1497.6 | 1498.9 | 0.09 |
1028 | 12.7 | 1850.4 | 1852.0 | 0.09 |
1396 | 16.5 | 2512.8 | 2512.6 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhang, Y.; Shen, H.; Zheng, X. Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor. Energies 2022, 15, 6643. https://doi.org/10.3390/en15186643
Yu J, Zhang Y, Shen H, Zheng X. Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor. Energies. 2022; 15(18):6643. https://doi.org/10.3390/en15186643
Chicago/Turabian StyleYu, Jie, Youjun Zhang, Hongyuan Shen, and Xiaoqin Zheng. 2022. "Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor" Energies 15, no. 18: 6643. https://doi.org/10.3390/en15186643
APA StyleYu, J., Zhang, Y., Shen, H., & Zheng, X. (2022). Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor. Energies, 15(18), 6643. https://doi.org/10.3390/en15186643