Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Herbicide Samples for Detonative Combustion
- ⮚
- Calculation of useable parameters for the considered mixtures. Calculations were carried out under the assumption of a stoichiometric course of detonative combustion reaction, i.e., with zero oxygen balance.
- ⮚
- The determination of higher calorific value, composition of elements, and global formula of hypothetic component, in the case when the method is applied to expired herbicides.
2.2. Preparation of the Soil Substrate for the Biological Test
2.3. Preparation of Soil Extracts for Chromatographic Analysis
2.4. Preparation of Soil Extracts to Biological Tests
2.5. Determination of Herbicide Residue in Extracts by Gas Chromatography
2.6. Determination of Herbicide Residue in Extracts by Means of Liquid Chromatography
2.7. Biological Tests
- Biological tests were carried out in three series:
- ⮚
- 1st series:
- ⮚
- 2nd series:
- ⮚
- 3rd series:
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Prevention and Disposal of Obsolete Pesticides. Available online: www.fao.org/agriculture/crops/obsolete-pesticides/where-stocks/en/ (accessed on 3 August 2022).
- Gałuszka, A.; Migaszewski, M.; Manecki, P. Pesticide Burial Grounds in Poland: A Review. Environ. Int. 2011, 37, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, T.; Russel, R.; Selleck, M. Using Enzymes to Clean Pesticide Residues. Pestic. Outlook 2002, 13, 149–151. [Google Scholar] [CrossRef]
- Barriuso, E.; Benoit, P.; Dubus, I.G. Formation of Pesticide Nonextractable (Bound) Residues in Soil: Magnitude, Controlling Factors and Reversibility. Environ. Sci. Technol. 2008, 42, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Siddique, T.; Arshad, M.; Saleem, M. Bioremediation and Phytoremediation of Pesticides: Recent Advances. Crit. Rev. Environ. Sci. Technol. 2009, 39, 843–907. [Google Scholar] [CrossRef]
- Rao, M.A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of Enzymes in the Remediation of Polluted Environments. J. Soil Sci. Plant Nutr. 2010, 10, 333–353. Available online: https://www.researchgate.net/publication/228819276_Role_of_enzymes_in_the_remediation_of_polluted_environments/link/09e4150d0243fdf3fb000000/download (accessed on 8 August 2022). [CrossRef]
- Chaplain, V.; Mamy, L.; Vieublé-Gonod, L.; Mougin Ch Benoit, P.; Barriuso, E.; Nélieu, S. Fate of Pesticides in Soils: Toward an Integrated Approach of Influential Factors. In Pesticides in the Modern World-Risks and Benefits; Stoytcheva, M., Ed.; Intech OpenAcess: London, UK, 2011; Chapter 29; pp. 535–550. [Google Scholar]
- Uqab, B.; Mudasir, S.; Nazir, R. Review on Bioremediation of Pesticides. J. Bioremediat. Biodegrad. 2016, 7, 343. Available online: https://www.omicsonline.org/open-access-pdfs/review-on-bioremediation-of-pesticides-2155-6199-1000343.pdf (accessed on 9 August 2022).
- Schneider, D.; Beckstrom, B.D. Cleanup of Contaminated Soils by Pyrolysis in an Indirectly Heated Rotary Kiln. Environ. Progress. 1990, 9, 165–168. [Google Scholar] [CrossRef]
- Stobiecki, S.; Cieszkowski, J.; Siłowiecki, A.; Stobiecki, T. Disposal of Pesticides as an Alternative Fuel in Cement Kiln. In Proceedings of the Project Outline 6th International HCH and Pesticides Forum, Poznań, Poland, 20–22 March 2001; pp. 285–289. Available online: http://www.hchforum.com/6th/forum_book/A.5.8.pdf (accessed on 11 August 2022).
- Senneca, O.; Scherillo, F.; Nunziata, A. Thermal Degradation of Pesticides under Oxidative Conditions. J. Anal. Appl. Pyrolysis 2007, 80, 61–76. [Google Scholar] [CrossRef]
- Karstensen, K.H. Guidelines for Treatment of Hazardous Wastes and Co-Processing of AFRs in Cement Kilns; Report 66011/E1101/KHK; Department for Environmental Affairs and Tourism: Pretoria, South Africa, 2008. [Google Scholar]
- Cement Kilns. Center for Health, Environment & Justice. Available online: https://chej.org/wp-content/uploads/Cement-Kilns-PUB-0401.pdf (accessed on 11 August 2022).
- Biegańska, J. Neutralization of 4,6-Dinitro-o-cresol Waste Pesticide by Means of Detonative Combustion. Environ. Sci. Technol. 2005, 39, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Biegańska, J.; Harat, A.; Zyzak, W. Neutralizing of Waste Pesticides from Dumping Grounds by Means of Explosive Burning. Inżynieria Ekol. 2013, 33, 13–20. [Google Scholar] [CrossRef]
- Amistadi, M.K.; Hall, J.K.; Bogus, E.R.; Mumm, R.O. Comparison of Gas Chromatography and Immunoassay Methods for the Detection of Atrazine in Water and Soil. J. Environ Sci. Health B 1997, 32, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Polese, L.; Dores, E.F.G.C.; Jardim, E.F.G.; Navickiene, S.; Ribeiro, M.L. Determination of Herbicides Residues in Soil by Small Scale Extraction. Eclet. Quím. 2002, 27. Available online: https://www.researchgate.net/publication/26353260_Determination_of_herbicides_residues_in_soil_by_small_scale_extraction/link/09e415020da55affae000000/download (accessed on 11 August 2022). [CrossRef]
- Takatori, S.; Okihashi, M.; Okamoto, Y.; Kitagawa, Y.; Kakimoto, S.; Murata, H.; Sumimoto, T.; Tanaka, Y. A Rapid and Easy Multiresidue Method for the Determination of Pesticide Residues in Vegetables, Fruits, and Cereals Using Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 2008, 91, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Delwichem, K.B.; Lehmann, J.; Walter, M.T. Atrazine Leaching from Biochar-amended Soils. Chemosphere 2014, 95, 346–352. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Crawford, J.W.; Álvarez, M.C.D.; Moreno, R.G. Soil Management for Sustainable Agriculture. Appl. Environ. Soil Sci. 2012, 2012, 850739. Available online: https://downloads.hindawi.com/journals/aess/2012/850739.pdf (accessed on 11 August 2022). [CrossRef]
- Ozcan, S.; Tor, A.; Aydin, M.E. Analytical Methods for Viable and Rapid Determination of Organochlorine Pesticides in Water and Soil Samples. In Pesticides—Strategies for Pesticides Analysis; Stoytcheva, M., Ed.; InTech: UK, London, 2011; Chapter 3; pp. 59–82. Available online: https://www.intechopen.com/chapters/12949 (accessed on 7 August 2022).
- Ashley, K.; Wise, T.J.; Mercado, W.; Parry, D.B. Ultrasonic Extraction and Field Portable Anodic Stripping Voltarnmetry Measurement of Lead in Dust Wipe Samples. J. Hazard. Mater. 2001, 83, 41–50. [Google Scholar] [CrossRef]
- European Weed Research Council (EWRC). Report of 3rd and 4th Meetings of EWRC; Committee of Methods in Weed Research, Weed Research: Oxford, UK, 1964; Volume 4. [Google Scholar]
Sample Number | ANFO | 1 | 2 | 3 |
---|---|---|---|---|
Name of the Flammable Component | Paraffin Oil | Atrazine | Chloridazon | Linuron |
Composition of the explosive: | ||||
Flammable component (%) NH4NO3 (%) | 5.47 94.53 | 10.49 89.51 | 10.79 89.25 | 12.91 87.09 |
Rated number of moles of individual elements per 1 kg of the explosive | ||||
Carbon Hydrogen Oxygen Nitrogen Others | 3.88 55.36 35.45 23.63 | 3.891 51.540 33.548 58.346 0.487 Cl | 4.850 48,481 33.936 23.756 0.485 Cl | 4.664 48.710 33.677 22.798 1.037 Cl |
Chemical composition of the explosion products (mole/kg of the explosive): | ||||
Carbon dioxide Carbon oxide Water (gaseous) Nitrogen Others | 3.88 0.00 27.68 11.82 | 3.891 0.000 25.770 29.173 0.244 Cl2 | 4.850 0.000 24.241 11.878 0.243 Cl2 | 4.664 0.000 24.355 11.399 0.519 Cl2 |
Specific volume of the explosion products: Vo (dm3/kg) | 972.16 | 1323.347 | 923.561 | 917.398 |
Heat of combination for the explosive: Qo (kJ/kg) | 4444.64 | 4620.932 | 4563.368 | 4561.834 |
Total heat of combination for the explosion products: Qp (kJ/kg) | 8194.82 | 7737.692 | 7747.163 | 7701.367 |
Heat of explosion: Qw (kJ/kg) | 3750.17 | 3116.760 | 3183.795 | 3139.533 |
Concentration of energy: Ev (kJ/dm3) | 3375.16 | 2805.084 | 2865.416 | 2825.580 |
Temperature of explosion: Tw (K) | 2753 | 2026 | 2462 | 2558 |
Average specific heat of gaseous products of explosion: cv (J/mol K) | 34.85 | 30.090 | 35.291 | 33.560 |
Exponent of the adiabatic curve: k | 1.24 | 1.28 | 1.20 | 1.25 |
Explosion pressure: Pw (MPa) | 893.76 | 895.608 | 759.214 | 783.554 |
Ideal work of explosion: A (kJ/kg) | 3100.00 | 2689.764 | 2464.257 | 2618.371 |
Specific energy: f (kJ/kg) | 993.06 | 995.120 | 843.571 | 870.616 |
Sample Number | Commonly Used Name of Agent | Chemical Structure | Plant Species | Application |
---|---|---|---|---|
1 | atrazine C8H14ClN5 | Oat ** | Through roots, directly to leaves from sprouting to the phase of 2–3 leaves | |
2 | linuron C9H10Cl2N2O2 | Charlock * | As above | |
3 | lenacil C13H18N2O2 | Charlock * | Through roots | |
4 | chloridazon C10H8ClN3O | Charlock * | Through roots, directly to leaves from sprouting to the phase of 2 ÷ 3 leaves | |
5 | dinoseb acetate C12H14N2O6 | Charlock * Oat ** | Directly to leaves from sprouting to the phase of 2 ÷ 3 leaves | |
6 | prometryn C10H19N5S | Charlock * | Through roots, directly to leaves from sprouting to the phase of 2 ÷ 3 leaves | |
7 | diuron C9H10Cl2N2O | Charlock * Oat ** | As above |
Sample Number | Biologically Active Substance | Content of Herbicide in ANFO Type Material (%) | Result (mg/kg) | Remarks |
---|---|---|---|---|
1 | atrazine | 10.49 | bdl | Dl = 7.5 mg/kg |
2 | linuron | 12.91 | bdl | Dl = 2.75 mg/kg |
3 | lenacil | 8.15 | bdl | Dl = 2.9 mg/kg |
4 | chloridazon | 10.79 | 9.28 | Dl = 4.08 mg/kg |
5 | dinoseb acetate | 12.37 | bdl | Dl = 2.8 mg/kg |
6 | prometryn | 8.74 | bdl | Dl = 1.5 mg/kg |
7 | diuron | 11.69 | 22.2 | Dl = 12 mg/kg |
Symptoms of Phytotoxic Effect on Harvestable Plants | Quality Valuation Number |
---|---|
No symptoms | 1 |
Slight symptoms, insignificant withholding of growth | 2 |
Slight but easily visible symptoms | 3 |
More significant symptoms, e.g., chlorosis | 4 |
Thinning, advanced chlorosis or strong muffling of plants | 5 |
Strong damage, withering and dying of plants | 6 |
7 | |
8 | |
Total destruction of plants | 9 |
Sample Number | Herbicide Agent | Plant | Test Number | Number of Seed Sown | Number of Seeds Sprouted | Sprouting Efficiency (%) | Quality Valuation Number | Symptoms |
---|---|---|---|---|---|---|---|---|
1 | atrazine | Oat | 1 | 15 | 15 | 100 | 1 | lack |
2 | 15 | 15 | 100 | 1 | lack | |||
3 | 15 | 14 | 93 | 1 | lack | |||
4 | 15 | 15 | 100 | 1 | lack | |||
5 | 15 | 15 | 100 | 1 | lack | |||
2 | linuron | Charlock | 1 | 25 | 24 | 96 | 1 | lack |
2 | 25 | 25 | 100 | 1 | lack | |||
3 | 25 | 25 | 100 | 1 | lack | |||
4 | 25 | 23 | 92 | 1 | lack | |||
5 | 25 | 24 | 96 | 1 | lack | |||
3 | lenacil | Charlock | 1 | 25 | 23 | 92 | 1 | lack |
2 | 25 | 23 | 92 | 1 | lack | |||
3 | 25 | 24 | 96 | 1 | lack | |||
4 | 25 | 23 | 92 | 1 | lack | |||
5 | 25 | 22 | 88 | 1 | lack | |||
4 | chloridazon | Charlock | 1 | 25 | 23 | 92 | 1 | lack |
2 | 25 | 23 | 92 | 1 | lack | |||
3 | 25 | 22 | 88 | 1 | lack | |||
4 | 25 | 22 | 88 | 1 | lack | |||
5 | 25 | 24 | 96 | 1 | lack | |||
5 | dinoseb acetate | Charlock | 1 | 25 | 22 | 88 | 1 | lack |
2 | 25 | 23 | 92 | 1 | lack | |||
3 | 25 | 25 | 100 | 1 | lack | |||
4 | 25 | 25 | 100 | 1 | lack | |||
5 | 25 | 24 | 96 | 1 | lack | |||
Oat | 1 | 15 | 15 | 100 | 1 | lack | ||
2 | 15 | 15 | 100 | 1 | lack | |||
3 | 15 | 15 | 100 | 1 | lack | |||
4 | 15 | 15 | 100 | 1 | lack | |||
5 | 15 | 15 | 100 | 1 | lack | |||
6 | prometryn | Charlock | 1 | 25 | 23 | 92 | 1 | lack |
2 | 25 | 22 | 88 | 1 | lack | |||
3 | 25 | 24 | 96 | 1 | lack | |||
4 | 25 | 22 | 88 | 1 | lack | |||
5 | 25 | 23 | 92 | 1 | lack | |||
7 | diuron | Charlock | 1 | 25 | 25 | 100 | 1 | lack |
2 | 25 | 24 | 96 | 1 | lack | |||
3 | 25 | 22 | 88 | 1 | lack | |||
4 | 25 | 24 | 96 | 1 | lack | |||
5 | 25 | 22 | 88 | 1 | lack | |||
Oat | 1 | 15 | 15 | 100 | 1 | lack | ||
2 | 15 | 14 | 93 | 1 | lack | |||
3 | 15 | 15 | 100 | 1 | lack | |||
4 | 15 | 15 | 100 | 1 | lack | |||
5 | 15 | 15 | 100 | 1 | lack |
Sample Number | Herbicide Agent | Plant | Test Number | Quality Valuation Number | |||
---|---|---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 3 | Stage 4 | ||||
1 | atrazine | Oat | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
2 | linuron | Charlock | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
3 | lenacil | Charlock | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
4 | chloridazon | Charlock | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
5 | dinoseb acetate | Charlock | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
Oat | 1 | 1 | 1 | 1 | 1 | ||
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
6 | prometryn | Charlock | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
7 | diuron | Charlock | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 | |||
Oat | 1 | 1 | 1 | 1 | 1 | ||
2 | 1 | 1 | 1 | 1 | |||
3 | 1 | 1 | 1 | 1 | |||
4 | 1 | 1 | 1 | 1 | |||
5 | 1 | 1 | 1 | 1 |
Sample Number | Herbicide Agent | Plant | Test Number | Quality Valuation Number | |||
---|---|---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 3 | Stage 4 | ||||
1 | atrazine | Oat | 1 | 1 | 1 | 5 | 6 |
2 | 1 | 2 | 4 | 7 | |||
3 | 1 | 1 | 5 | 7 | |||
4 | 1 | 2 | 5 | 7 | |||
5 | 1 | 2 | 4 | 6 | |||
2 | linuron | Charlock | 1 | 1 | 4 | 8 | 9 |
2 | 1 | 3 | 8 | 9 | |||
3 | 1 | 3 | 7 | 9 | |||
4 | 1 | 4 | 7 | 9 | |||
5 | 1 | 4 | 7 | 9 | |||
3 | lenacil | Charlock | 1 | 1 | 5 | 7 | 9 |
2 | 1 | 5 | 7 | 9 | |||
3 | 1 | 4 | 8 | 9 | |||
4 | 1 | 5 | 8 | 9 | |||
5 | 1 | 5 | 7 | 9 | |||
4 | chloridazon | Charlock | 1 | 1 | 4 | 7 | 9 |
2 | 1 | 4 | 7 | 9 | |||
3 | 1 | 3 | 8 | 9 | |||
4 | 1 | 3 | 7 | 9 | |||
5 | 1 | 3 | 7 | 9 | |||
5 | dinoseb acetate | Charlock | 1 | 7 | 9 | Observation stopped | Observation stopped |
2 | 6 | 9 | |||||
3 | 7 | 9 | |||||
4 | 7 | 9 | |||||
5 | 7 | 9 | |||||
Oat | 1 | 1 | 7 | 9 | Observation stopped | ||
2 | 1 | 6 | 9 | ||||
3 | 1 | 7 | 9 | ||||
4 | 1 | 7 | 9 | ||||
5 | 1 | 7 | 9 | ||||
6 | prometryn | Charlock | 1 | 1 | 4 | 8 | 9 |
2 | 1 | 4 | 7 | 9 | |||
3 | 1 | 3 | 7 | 9 | |||
4 | 1 | 3 | 7 | 9 | |||
5 | 1 | 3 | 7 | 9 | |||
7 | diuron | Charlock | 1 | 1 | 4 | 7 | 9 |
2 | 1 | 4 | 7 | 9 | |||
3 | 1 | 5 | 8 | 9 | |||
4 | 1 | 5 | 7 | 9 | |||
5 | 1 | 5 | 8 | 9 | |||
Oat | 1 | 1 | 2 | 7 | 9 | ||
2 | 1 | 2 | 6 | 9 | |||
3 | 1 | 3 | 7 | 9 | |||
4 | 1 | 2 | 7 | 9 | |||
5 | 1 | 2 | 6 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegańska, J.; Barański, K. Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion. Energies 2022, 15, 6980. https://doi.org/10.3390/en15196980
Biegańska J, Barański K. Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion. Energies. 2022; 15(19):6980. https://doi.org/10.3390/en15196980
Chicago/Turabian StyleBiegańska, Jolanta, and Krzysztof Barański. 2022. "Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion" Energies 15, no. 19: 6980. https://doi.org/10.3390/en15196980
APA StyleBiegańska, J., & Barański, K. (2022). Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion. Energies, 15(19), 6980. https://doi.org/10.3390/en15196980