Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrogeological Settings
2.2. Test Sits and Borehole Setting
2.3. Thermal Response Test and Parameters Estimation
3. Results and Discussions
3.1. Ground Temperature
3.2. Thermos-Physical Properties of the Geological Materials
3.3. TRT by Typical Borehole Configurations
3.4. Comparison of Thermal Conductivity by CHTM-Based TRT and Laboratory Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zeng, H.; Diao, N.; Fang, Z. Heat transfer analysis of boreholes in vertical ground heat exchangers. Int. J. Heat Mass Transf. 2003, 46, 4467–4481. [Google Scholar] [CrossRef]
- Blum, P.; Campillo, G.; Münch, W.; Kölbel, T. CO2 savings of ground source heat pump systems—A regional analysis. Renew. Energy 2010, 35, 122–127. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Lunda, J.W.; Tothb, A.N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 2021, 90, 101915. [Google Scholar] [CrossRef]
- Wang, W.; Wang, G.; Zhu, X.; Liu, Z. Characteristics and potential of shallow geothermal resources in provincial capital cities of China. Geology 2017, 44, 1062–1073. [Google Scholar]
- Tao, S.; Ru, M.Y.; Du, W.; Zhu, X.; Zhong, Q.R.; Li, B.G.; Shen, G.F.; Pan, X.L.; Meng, W.J.; Chen, Y.L.; et al. Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. Nat. Energy 2018, 3, 567–573. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Yang, F.; Liu, F. Test investigation of operation performance of novel split-type ground source heat pump systems for clean heating of rural households in North China. Renew. Energy 2021, 163, 188–197. [Google Scholar] [CrossRef]
- Cui, P.; Yang, H.; Fang, Z. Heat transfer analysis of ground heat exchangers with inclined boreholes. Appl. Therm. Eng. 2006, 26, 1169–1175. [Google Scholar] [CrossRef]
- Ouzzane, M.; Eslami-Nejad, P.; Badache, M.; Aidoun, Z. New correlations for the prediction of the undisturbed ground temperature. Geothermics 2015, 53, 379–384. [Google Scholar] [CrossRef]
- Pouloupatis, P.D.; Tassou, S.A.; Christodoulides, P.; Florides, G.A. Parametric analysis of the factors affecting the efficiency of ground heat exchangers and design application aspects in Cyprus. Renew. Energy 2017, 103, 721–728. [Google Scholar] [CrossRef]
- Loveridge, F.; Holmes, G.; Powrie, W.; Roberts, T. Thermal response testing through the Chalk aquifer in London, UK. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 197–210. [Google Scholar] [CrossRef]
- Barry-Macaulay, D.; Bouazza, A.; Singh, R.M.; Wang, B.; Ranjith, P.G. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng. Geol. 2013, 164, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Rohn, J.; Xiang, W.; Bertermann, D.; Blum, P. A review of ground investigations for ground source heat pump (GSHP) systems. Energy Build. 2016, 117, 160–175. [Google Scholar] [CrossRef]
- Dalla Santa, G.; Galgaro, A.; Sassi, R.; Cultrera, M.; Scotton, P.; Mueller, J.; Bertermann, D.; Mendrinos, D.; Pasquali, R.; Perego, R.; et al. An updated ground thermal properties database for GSHP applications. Geothermics 2020, 85, 101758. [Google Scholar] [CrossRef]
- Tarnawski, V.R.; Momose, T.; Leong, W.H.; Bovesecchi, G.; Coppa, P. Thermal Conductivity of Standard Sands. Part I. Dry-State Conditions. Int. J. Thermophys. 2009, 30, 949–968. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal Properties of Soils as affected by Density and Water Content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, Z.; Chen, T.; Wang, W.; Lu, C.; Zhang, Q. Study on the Thermophysical Properties and Influencing Factors of Regional Surface Shallow Rock and Soil in China. Front. Earth Sci. 2022, 10, 864548. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, P.; Yu, Z.; Fang, J.; Li, C. Characteristics of ground thermal properties in Harbin, China. Energy Build. 2014, 69, 251–259. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Xie, J.; Xia, D.; Huang, W.; Shao, H.; Xiang, W.; Rohn, J. Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China. Renew. Energy 2018, 118, 230–244. [Google Scholar] [CrossRef]
- Spitler, J.D.; Gehlin, S.E.A. Thermal response testing for ground source heat pump systems—An historical review. Renew. Sustain. Energy Rev. 2015, 50, 1125–1137. [Google Scholar] [CrossRef]
- Radioti, G.; Sartor, K.; Charlier, R.; Dewallef, P.; Nguyen, F. Effect of undisturbed ground temperature on the design of closed-loop geothermal systems: A case study in a semi-urban environment. Appl. Energy 2017, 200, 89–105. [Google Scholar] [CrossRef]
- Hu, J.Z. An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow. Appl. Energy 2017, 202, 537–549. [Google Scholar] [CrossRef]
- Franco, A.; Conti, P. Clearing a path for ground heat exchange systems: A review on termal response test (TRT) methods and a geotechnical routine test for estimating soil thermal properties. Energies 2020, 13, 2965. [Google Scholar] [CrossRef]
- Fujii, H.; Okubo, H.; Nishi, K.; Itoi, R.; Ohyama, K.; Shibata, K. An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics 2009, 38, 399–406. [Google Scholar] [CrossRef]
- Poppei, J.; Schwarz, R.; Peron, H.; Mattsson, N.; Laloui, L.; Wagner, R.; Rohner, E. Innovative Improvements of Thermal Response Tests (Intermediate Report); Swiss Federal Office of Energy: Berne, Switzerland, 2006. [Google Scholar]
- Wang, H.; Qi, C.; Du, H.; Gu, J. Improved method and case study of thermal response test for borehole heat exchangers of ground source heat pump system. Renew. Energy 2010, 35, 727–733. [Google Scholar] [CrossRef]
- Wang, H.; Qi, C.; Du, H.; Gu, J. Thermal performance of borehole heat exchanger under groundwater flow: A case study from Baoding. Energy Build. 2009, 41, 1368–1373. [Google Scholar] [CrossRef]
- Cao, G.; Han, D.; Currell, M.J.; Zheng, C. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations. J. Asian Earth Sci. 2016, 127, 119–136. [Google Scholar] [CrossRef]
- Zongyu, C.; Jixiang, Q.; Jianming, X.; Jiaming, X.; Hao, Y.; Yunju, N. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain. Appl. Geochem. 2003, 18, 997–1009. [Google Scholar] [CrossRef]
- Foster, S.; Garduno, H.; Evans, R.; Olson, D.; Tian, Y.; Zhang, W.; Han, Z. Quaternary Aquifer of the North China Plain—Assessing and achieving groundwater resource sustainability. Hydrogeol. J. 2004, 12, 81–93. [Google Scholar] [CrossRef]
- Shu, Y.; Villholth, K.G.; Jensen, K.H.; Stisen, S.; Lei, Y. Integrated hydrological modeling of the North China Plain: Options for sustainable groundwater use in the alluvial plain of Mt. Taihang. J. Hydrol. 2012, 464–465, 79–93. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Duan, B.; Shao, J. Experimental evidence for hyperfiltration of saline water through compacted clay aquitard in the Hebei Plain. J. Earth Sci. 2014, 25, 1076–1082. [Google Scholar] [CrossRef]
- Li, X.; Zhou, A.; Gan, Y.; Yu, T.; Wang, D.; Liu, Y. Controls on the δ34S and δ18O of dissolved sulfate in the Quaternary aquifers of the North China Plain. J. Hydrol. 2011, 400, 312–322. [Google Scholar] [CrossRef]
- Chen, W.H. Groundwater in Hebei; Seismological Press: Beijing, China, 1999. [Google Scholar]
- Zhang, Z.J.; Fei, Y.H. Atlas of Groundwater Sustainable Utilization in North China Plain; Sinomaps Press: Beijing, China, 2009. [Google Scholar]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70–71, 250–264. [Google Scholar] [CrossRef]
- Lu, X.; Jin, M.; van Genuchten, M.T.; Wang, B. Groundwater recharge at five representative sites in the Hebei Plain, China. Ground Water 2011, 49, 286–294. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Qian, K.; Xie, X.; Xue, X.; Yang, Y.; Wang, Y. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling. Sci. Total Environ. 2017, 598, 239–248. [Google Scholar] [CrossRef]
- Kharazmi, A.; Faraji, N.; Hussin, R.M.; Saion, E.; Yunus, W.M.; Behzad, K. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach. Beilstein. J. Nanotechnol. 2015, 6, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Eskilson, P.; Claesson, J. Simulation Model for Thermally Interacting Heat Extraction Boreholes. Numer. Heat Transf. 1988, 13, 149–165. [Google Scholar] [CrossRef]
- Lamarche, L.; Beauchamp, B. A new contribution to the finite line-source model for geothermal boreholes. Energy Build. 2007, 39, 188–198. [Google Scholar] [CrossRef]
- Badache, M.; Eslami-Nejad, P.; Ouzzane, M.; Eslami-Nejad, P.; Badache, M.; Aidoun, Z.; Lamarche, L. A new modeling approach for improved ground temperature profile determination. Renew. Energy 2016, 85, 436–444. [Google Scholar] [CrossRef]
- Popiel, C.O.; Wojtkowiak, J.; Biernacka, B. Measurement of temperature distribution in ground. Exp. Therm. Fluid Sci. 2001, 25, 301–309. [Google Scholar] [CrossRef]
- van Manen, S.M.; Wallin, E. Ground temperature profiles and thermal rock properties at Wairakei, New Zealand. Renew. Energy 2012, 43, 313–321. [Google Scholar] [CrossRef]
- Xiong, Z.; Fisher, D.E.; Spitler, J.D. Development and validation of a Slinky™ ground heat exchanger model. Appl. Energy 2015, 141, 57–69. [Google Scholar] [CrossRef]
- Luo, J.; Huang, W.; Zhu, Y.; Jiao, Y.; Xiang, W.; Rohn, J. Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers. Appl. Therm. Eng. 2018, 128, 508–516. [Google Scholar] [CrossRef]
Hydrogeological Setting | Representative Region | Water Table Depth (m) | Groundwater Flow Velocity (m/d) | Lithology (<150 m) |
---|---|---|---|---|
Piedmont Plain (I) | BD and SJZ | 20–45 | 0.013–0.26 | Gravel, sand, silt, and clay |
Central Plain (II) | HS, RQ, HJ, and WQ | 3–5 | 0.002–0.10 | Clay, silty clay, and silt |
Coastal plain (III) | CZ, QX, and HH | 1–5 | 0.002–0.10 | Silt and silty clay |
Hydrogeological Setting | Borehole | Depth (m) | Water Table Depth (m) | Groundwater Flow Velocity (m/d) | Temperature Sensor |
---|---|---|---|---|---|
Piedmont plain (I) | BD-1 | 100 | 25 | 0.085 | √ |
BD-2 | 100 | 15 | 0.04 | √ | |
SJZ-1 | 100 | 45 | 0.138 | ||
SJZ-2 | 120 | 42 | 0.1162 | √ | |
SJZ-3 | 120 | 38 | 0.2125 | √ | |
Central plain (II) | RQ-1 | 120 | 5 | 0.005 | √ |
HJ-1 | 150 | 5 | <0.005 | ||
HJ-2 | 120 | 5 | <0.005 | √ | |
WQ-1 | 120 | 5 | 0.005 | √ | |
HS-1 | 100 | 5 | 0.005 | ||
Coastal plain (III) | CZ-1 | 100 | 4 | 0.005 | |
CZ-2 | 120 | 4 | <0.005 | ||
HH-1 | 150 | 3 | <0.005 | √ | |
QX-1 | 120 | 3 | <0.005 | ||
QX-2 | 120 | 3 | <0.005 | √ |
Hydrogeological Setting | Borehole | Steady Stage | Heat-Extraction Stage | Heat-Injection Stage | ||
---|---|---|---|---|---|---|
Δt (h) | Δt (h) | Tin (°C) | Δt (h) | Tin (°C) | ||
Piedmont plain (I) | BD-1 | 24 | 48 | 7.41 | 48 | 31.61 |
BD-2 | 26 | 30 | 5.38 | 26 | 29.23 | |
SJZ-1 | 23 | / | / | 48 | 32.19 | |
SJZ-2 | 24 | / | / | 48 | 33.00 | |
SJZ-3 | 26 | / | / | 24 | 19.08 | |
Central plain (II) | RQ-1 | 24 | 24 | 8.45 | 20 | 29.07 |
HJ-1 | 18 | 24 | 9.75 | 21 | 28.92 | |
HJ-2 | 18 | 24 | 8.26 | 24 | 30.00 | |
WQ-1 | 21 | 23 | 8.53 | 23 | 30.21 | |
HS-1 | 48 | 48 | 7.83 | 48 | 30.20 | |
Coastal plain (III) | CZ-1 | 48 | 48 | 7.48 | 48 | 29.65 |
CZ-2 | 48 | 48 | 8.00 | 48 | 30.00 | |
HH-1 | 24 | / | / | 48 | 25.47 | |
QX-1 | 24 | / | / | 48 | 29.87 | |
QX-2 | 24 | / | / | 48 | 25.90 |
Depth (m) | Thickness (m) | Lithology |
---|---|---|
14 | 14 | clay, silty clay, and silt |
18 | 4 | coarse sand |
47 | 29 | sandy clay |
50 | 3 | coarse sand |
55 | 5 | sandy clay |
65 | 10 | coarse sand |
66 | 1 | gravel |
71 | 5 | fine sand |
77 | 6 | gravel |
93 | 16 | coarse sand |
120 | 27 | fine sand and sandy clay interlayer |
14 | 14 | clay, silty clay, and silt |
18 | 4 | coarse sand |
47 | 29 | sandy clay |
50 | 3 | coarse sand |
55 | 5 | sandy clay |
Hydrogeological Setting | Borehole | Min (W/(m·K)) | Max (W/(m·K)) | Standard Deviation | Mean (W/(m·K)) |
---|---|---|---|---|---|
Piedmont plain (I) | BD-1 | 1.32 | 1.92 | 0.75 | 1.53 |
BD-2 | 1.34 | 2.03 | 0.89 | 1.57 | |
SJZ-1 | 1.39 | 1.92 | 0.62 | 1.70 | |
SJZ-2 | 1.28 | 1.97 | 0.79 | 1.77 | |
SJZ-3 | 1.49 | 2.11 | 0.81 | 1.79 | |
Central plain (II) | RQ-1 | 1.33 | 1.8 | 0.32 | 1.58 |
HJ-1 | 1.34 | 1.84 | 0.56 | 1.54 | |
HJ-2 | 1.35 | 1.95 | 0.54 | 1.64 | |
WQ-1 | 1.33 | 1.95 | 0.44 | 1.54 | |
HS-1 | 1.42 | 1.75 | 0.16 | 1.57 | |
Coastal plain (III) | CZ-1 | 1.37 | 1.77 | 0.21 | 1.57 |
CZ-2 | 1.26 | 1.79 | 0.32 | 1.59 | |
HH-1 | 1.26 | 1.95 | 0.69 | 1.62 | |
QX-1 | 1.26 | 1.88 | 0.50 | 1.52 | |
QX-2 | 1.14 | 1.78 | 0.62 | 1.52 |
Hydrogeological Setting | Borehole | Tin-out-average (°C) | Tdepth-average (°C) | Absolute Deviation (%) |
---|---|---|---|---|
Piedmont plain (I) | BD-1 | 16.07 | 14.85 | 8.22 |
BD-2 | 16.29 | 14.91 | 9.26 | |
SJZ-1 | 16.84 | / | / | |
SJZ-2 | 16.09 | 13.98 | 15.09 | |
SJZ-3 | 16.33 | 14.93 | 9.38 | |
Central plain (II) | RQ-1 | 15.24 | 14.96 | 1.87 |
HJ-1 | 15.82 | / | / | |
HJ-2 | 15.17 | 15.88 | 0.71 | |
WQ-1 | 15.45 | 15.71 | 0.26 | |
HS-1 | 17.28 | / | / | |
Coastal plain (III) | CZ-1 | 16.20 | / | / |
CZ-2 | 15.95 | / | / | |
HH-1 | 15.31 | 14.31 | 1.00 | |
QX-1 | 15.92 | 15.21 | 0.71 | |
QX-2 | 15.71 | / |
Hydrogeological Setting | Borehole | Effective Thermal Conductivity (W/(m·K)) | ||
---|---|---|---|---|
TRT | Laboratory Method | Absolute Difference | ||
Piedmont plain (I) | BD-1 | 2.63 | 1.57 | 1.06 |
BD-2 | 2.58 | 1.53 | 1.05 | |
SJZ-1 | 2.37 | 1.69 | 0.68 | |
SJZ-2 | 2.63 | 1.76 | 0.87 | |
SJZ-3 | 2.68 | 1.79 | 0.89 | |
Central plain (II) | RQ-1 | 1.35 | 1.57 | 0.22 |
HJ-1 | 1.47 | 1.54 | 0.07 | |
HJ-2 | 1.63 | 1.64 | 0.01 | |
WQ-1 | 1.35 | 1.54 | 0.19 | |
HS-1 | 1.50 | 1.57 | 0.07 | |
Coastal plain (III) | CZ-1 | 1.69 | 1.60 | 0.09 |
CZ-2 | 1.58 | 1.62 | 0.04 | |
HH-1 | 1.70 | 1.62 | 0.08 | |
QX-1 | 1.94 | 1.52 | 0.42 | |
QX-2 | 1.61 | 1.52 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, G.; Liu, F.; Liu, C. Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area. Energies 2022, 15, 7375. https://doi.org/10.3390/en15197375
Wang W, Wang G, Liu F, Liu C. Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area. Energies. 2022; 15(19):7375. https://doi.org/10.3390/en15197375
Chicago/Turabian StyleWang, Wanli, Guiling Wang, Feng Liu, and Chunlei Liu. 2022. "Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area" Energies 15, no. 19: 7375. https://doi.org/10.3390/en15197375
APA StyleWang, W., Wang, G., Liu, F., & Liu, C. (2022). Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area. Energies, 15(19), 7375. https://doi.org/10.3390/en15197375