Avocado Tree Pruning Pellets (Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Biomass Origin
2.2. Analysis of Pruning
2.2.1. Sample Preparation
2.2.2. Proximate Analysis and Higher Heating Value
2.2.3. Basic Chemical Analysis, Elemental Analysis and Ash Microanalysis
2.2.4. Thermogravimetric Analysis (TGA)
2.3. Pellet Production and Characterization Pruning
2.4. Pellet Quality Assessment
2.5. Potential Pellet Uses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Pruning
3.1.1. Total Moisture Content
3.1.2. Proximate Analysis and Higher Heating Value
3.1.3. Basic Chemical Analysis, Elemental Analysis and Ash Microanalysis
3.1.4. Thermogravimetric Analysis (TGA)
3.2. Pellet Production and Characterization
3.3. Pellet Quality Assessment
3.4. Potential Pellet Uses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baasch, S. Energy transition with biomass residues and waste: Regional-scale potential and conflicts. A case study from North Hesse, Germany. J. Environ. Policy Plan. 2021, 23, 243–255. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A review of densified solid biomass for energy production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.D.M.; Castro, E. Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Masera-Cerutti, O.; Coralli, F.; García-Bustamante, C.; Riegelhaupt, E.; Arias Chalico, T.; Vega Gregg, J.; Díaz-Jiménez, R.; Guerrero-Pacheco, G.; Cecotti, L. La Bioenergía en México: Situación Actual Y Perspectivas. Cuaderno Temático No. 4. Red Mexicana de Bioenergía. Available online: https://rembio.org.mx/wp-content/uploads/2014/12/CT4.pdf (accessed on 12 January 2022).
- Velázquez-Martí, B. Aprovechamiento de la Biomasa Para Uso Energético, 2nd ed.; Editorial Reverté; Universitat Politècnica de València: Valencia, Spain, 2018. [Google Scholar]
- Varnero, C.S.; Urrutia, M.V. Power Form Agripellets. In Frontiers in Bioenergy and Biofuels; Jacob-Lopes, E., Queiroz Zepka, L., Eds.; IntechOpen: London, UK, 2017; pp. 465–481. [Google Scholar]
- Monter, A.V.; Aguilera, A.M. Avances de la fruticultura en México. Rev. Bras. De Frutic. 2011, 33, 179–186. [Google Scholar] [CrossRef] [Green Version]
- SIAP, Servicio de Información Agroalimentaria y Pesquera (SIAP). Avance de Siembras y Cosechas: Resumen nacional por estado, Perennes, Febrero 2022. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Available online: https://nube.siap.gob.mx/avance_agricola/ (accessed on 20 March 2022).
- Tauro, R.; Velázquez-Martí, B.; Manrique, S.; Ricker, M.; Martínez-Bravo, R.; Ruiz-García, V.M.; Ramos-Vargas, S.; Masera, O.; Soria-González, J.A.; Armendáriz-Arnez, C. Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities. Energies 2022, 15, 1715. [Google Scholar] [CrossRef]
- Hernández, A. Situación Actual Del Sistema Producto Aguacate. Centro de Estudios Para El Desarrollo Rural Sustentable Y la Soberanía Alimentaria (Cedrssa), Palacio de San Lázaro. Available online: http://www.cedrssa.gob.mx/files/10/16Situación%20actual%20del%20sistema%20producto%20aguacate.pdf (accessed on 8 April 2022).
- Martínez-Guido, S.I.; Ríos-Badrán, I.M.; Gutiérrez-Antonio, C.; Ponce-Ortega, J.M. Strategic planning for the use of waste biomass pellets in Mexican power plants. Renew. Energy 2019, 130, 622–632. [Google Scholar] [CrossRef]
- Japhet, J.A.; Tokan, A.; Kyauta, E.E. A Review of Pellet Production from Biomass Residues as Domestic Fuel. Int. J. Environ. Agric. Biotechnol. 2019, 4, 835–842. [Google Scholar] [CrossRef]
- Abdoli, M.A.; Golzary, A.; Hosseini, A.; Sadeghi, P. Biomass Densification. In Wood Pellet as a Renewable Source of Energy, University of Tehran Science and Humanities Series; Springer: Cham, Switzerland, 2018; pp. 33–46. [Google Scholar] [CrossRef]
- DOF, Acuerdo Por El Que la Secretaría de Energía Aprueba Y Publica la Actualización de la Estrategia de Transición Para Promover El Uso de Tecnologías Y Combustibles Más Limpios, en Términos de la Ley de Transición Energética. Available online: http://dof.gob.mx/nota_detalle.php?codigo=5585823&fecha=07/02/2020&print=true (accessed on 5 March 2022).
- ENplus, Manual Enplus, “Esquema de Certificación de Calidad Para Pellets de Madera Parte 3: Requisitos de Calidad de Los Pellets”. Available online: https://enplus-pellets.eu/es/component/attachments/?task=download&id=162:ENplus-Manual-Espaa-vs-3 (accessed on 12 February 2022).
- EN ISO 17225-2:2014; Biocombustibles Sólidos. Especificaciones y Clases de Combustibles. Parte 2: Clases de Pellets de Madera. Asociación Española de Normalización: Madrid, Spain, 2014; 16p.
- EN ISO 18134-2:2017; Biocombustibles Sólidos. Determinación del Contenido de Humedad. Método de Secado en Estufa. Parte 2: Humedad Total. Método Simplificado. Asociación Española de Normalización: Madrid, Spain, 2017; 11p.
- EN ISO 18122:2015; Biocombustibles Sólidos.Método Para la Determinación del Contenido de Cenizas. Asociación Española de Normalización: Madrid, Spain, 2017; 11p.
- EN ISO 18123:2015; Biocombustibles Sólidos. Determinación del contenido en materia volátil. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016; 15p.
- EN ISO 18125:2017; Biocombustibles Sólidos. Determinación del Poder Calorífico. Asociación Española de Normalización: Madrid, Spain, 2018; 68p.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Krotz, L.; Giazzi, G. Characterization of Pharmaceutical Products by the C; Thermo Fischer Scientific: Milan, Italy. Available online: https://tools.thermofisher.com/content/sfs/brochures/AN-42192-OEA-CHNS-Pharmaceuticals-AN42192-EN.pdf (accessed on 17 January 2022).
- Arcibar-Orozco, J.A.; Josue, D.-B.; Rios-Hurtado, J.C.; Rangel-Mendez, J.R. Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem. Eng. J. 2014, 249, 201–209. [Google Scholar] [CrossRef]
- OriginPro Origin Analysis and Graphing (Version 2018) [Software]. OriginLab. 2018. Available online: https://www.originlab.com/2018 (accessed on 20 November 2021).
- EN ISO 15149-2:2016; Biocombustibles Sólidos. Determinación de la Distribución de Tamaño de Partícula Para Combustibles Sin Comprimir. Parte 2: Método del Tamiz Vibratorio con Abertura de Malla Inferior o Igual a 3.15 mm. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016; 17p.
- EN ISO 17829:2015; Biocombustibles Sólidos. Determinación de la Longitud y el Diámetro de Pellets. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016; 10p.
- EN ISO 18847:2016; Biocombustibles Sólidos. Determinación de la Densidad de Partícula de Pellets y Briquetas. Asociación Española de Normalización: Madrid, Spain, 2017; 20p.
- EN ISO 17828:2015; Biocombustibles Sólidos. Determinación de la Densidad a Granel. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016; 14p.
- EN ISO 17831-1:2015; Biocombustibles Sólidos. Determinación de la Durabilidad Mecánica de Pellets y Briquetas. Parte 1: Pellets. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016; 13p.
- Statistica: Statistica 10 (Versión 10.0) [Software]. StatSoft, Inc. Available online: https://www.tibco.com/products/data-science (accessed on 15 November 2021).
- Ruiz-García, V.M.; Huerta-Mendez, M.Y.; Vázquez-Tinoco, J.C.; Alvarado-Flores, J.J.; Berrueta-Soriano, V.M.; López-Albarrán, P.; Masera, O.; Rutiaga-Quiñones, J.G. Pellets from Lignocellulosic Material Obtained from Pruning Guava Trees: Characterization, Energy Performance and Emissions. Sustainability 2022, 14, 1336. [Google Scholar] [CrossRef]
- Hartmann, H. Solid Biofuels and Their Characteristics. In Energy from Organic Materials (Biomass); Kaltschmitt, M., Ed.; Encyclopedia of Sustainability Science and Technology Series; Springer: New York, NY, USA, 2019. [Google Scholar]
- Paniagua, S.; Reyes, S.; Lima, F.; Pilipenko, N.; Calvo, L.F. Combustion of avocado crop residues: Effect of crop variety and nature of nutrients. Fuel 2021, 291, 119660. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew. Sustain. Energy Rev. 2016, 53, 235–242. [Google Scholar] [CrossRef]
- Rodríguez, J.L.; Álvarez, X.; Valero, E.; Ortiz, L.; de la Torre-Rodríguez, N.; Acuña-Alonso, C. Influence of ashes in the use of forest biomass as source of energy. Fuel 2020, 283, 119256. [Google Scholar] [CrossRef]
- Holt, G.; Blodgett, T.; Nakayama, F. Physical and combustion characteristics of pellet fuel from cotton gin by-products produced by select processing treatments. Ind. Crop. Prod. 2006, 24, 204–213. [Google Scholar] [CrossRef]
- Artemio, C.P.; Maginot, N.H.; Serafín, C.-U.; Rahim, F.P.; Guadalupe, R.Q.J.; Fermín, C.-M. Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. PeerJ 2018, 6, e5504. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.A.; Jacinto, R.C. Apple pruning residues: Potential for burning in boiler systems and pellet production. Renew. Energy 2020, 152, 458–466. [Google Scholar] [CrossRef]
- Rutiaga-Quiñones, J.G.; Pintor-Ibarra, L.F.; Orihuela-Equihua, R.; González-Ortega, N.; Ramírez-Ramírez, M.A.; Carillo-Parra, A.; Carrillo-Ávila, N.; Navarrete-García, M.A.; Ruíz-Aquino, F.; Rangel-Méndez, J.R.; et al. Characterization of Mexican waste biomass relative to energy generation. BioResources 2020, 15, 8529. [Google Scholar] [CrossRef]
- Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Ríos-Saucedo, J.C.; Ruiz-García, V.M.; Ngangyo-Heya, M.; Nava-Berumen, C.A.; Núñez-Retana, V.D. Quality of Pellet Made from Agricultural and Forestry Waste in Mexico. BioEnergy Res. 2021, 15, 977–986. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel 2014, 117, 1139–1147. [Google Scholar] [CrossRef]
- Picchi, G.; Lombardini, C.; Pari, L.; Spinelli, R. Physical and chemical characteristics of renewable fuel obtained from pruning residues. J. Clean. Prod. 2018, 171, 457–463. [Google Scholar] [CrossRef]
- Kougioumtzis, M.A.; Kanaveli, I.P.; Karampinis, E.; Grammelis, P.; Kakaras, E. Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency. Renew. Energy 2021, 171, 516–525. [Google Scholar] [CrossRef]
- Nunes, L.; Loureiro, L.; Sá, L.; Matias, J.; Ferraz, A.; Rodrigues, A. Energy Recovery of Agricultural Residues: Incorporation of Vine Pruning in the Production of Biomass Pellets with ENplus® Certification. Recycling 2021, 6, 28. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlín, Germany, 1989. [Google Scholar]
- de Souza, H.J.P.L.; Muñoz, F.; Mendonça, R.T.; Sáez, K.; Olave, R.; Segura, C.; de Souza, D.P.; Protásio, T.D.P.; Rodríguez-Soalleiro, R. Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass. Renew. Energy 2021, 163, 1802–1816. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gomez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Acampora, A.; Civitarese, V.; Sperandio, G.; Rezaei, N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies 2021, 14, 4083. [Google Scholar] [CrossRef]
- Obernberger, I.I.; Brunner, T.T.; Barnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Biomass Densification: Systems, Particle Binding, Process Conditions, Quality Attributes, Conversion Performance, and International Standards; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Marcotte, S.; Castilla, C.; Morin, C.; Merlet-Machour, N.; Carrasco-Cabrera, L.; Medaerts, F.; Lavanant, H.; Afonso, C. Particulate inorganic salts and trace element emissions of a domestic boiler fed with five commercial brands of wood pellets. Environ. Sci. Pollut. Res. 2020, 27, 18221–18231. [Google Scholar] [CrossRef]
- Brunner, T. Aerosols and Coarse Fly Ashes in Fixed-Bed Biomass Combustion: Formation, Characterisation and Emissions. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Burgos, A.; Anaya, C.; Solorio, I. Impacto Ecológico del Cultivo de Aguacate a Nivel Regional y de Parcela en el Estado de Michoacán: Definición de una Tipología de Productores. Informe Final a la Fundación Produce Michoacán (FPM) y la AALPAUM; Centro de Investigaciones en Geografía Ambiental (CIGA/UNAM Campus Morelia): Morelia, Mexico, 2011. [Google Scholar] [CrossRef]
- Salinas-Vargas, D.; Cruz-Mendivil, A.; Peraza-Magallanes, A.Y.; Valenzuela-Leal, B.; Calderón-Vázquez, C.L.; Sandoval-Castro, E.; Martínez-Álvarez, J.C.; Cuadras-Camacho, J.E.; Romero-Romero, J.L.; Castro-López, M.L.; et al. Manual para el establecimiento del cultivo de aguacate en la zona centro norte de Sinaloa. CODESIN. Available online: https://codesin.mx/file/4/128_Manual%20del%20Aguacate%20-%2017%2011%202021%20.pdf_1637099646.pdf (accessed on 3 March 2022).
- Toscano, G.; Duca, D.; Rossini, G.; Mengarelli, C.; Pizzi, A. Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis. Energy 2015, 83, 351–357. [Google Scholar] [CrossRef]
- Flores, J.J.A.; Quiñones, J.G.R.; Rodríguez, M.L.; Vera, J.V.A.; Valencia, J.E.; Martínez, S.J.G.; Montesino, F.M.; Rosas, A.A. Thermal Degradation Kinetics and FT-IR Analysis on the Pyrolysis of Pinus pseudostrobus, Pinus leiophylla and Pinus montezumae as Forest Waste in Western Mexico. Energies 2020, 13, 969. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Kim, S.; Kim, H.-J.; Yang, H.-S. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim. Acta 2006, 451, 181–188. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, S. The structural and thermal characteristics of wheat straw hemicellulose. J. Anal. Appl. Pyrolysis 2010, 88, 134–139. [Google Scholar] [CrossRef]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes 2020, 8, 1048. [Google Scholar] [CrossRef]
- Collard, F.-X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Segura, C.; Bustamante-García, V.; Cápiro, O.G.; Jiménez, R. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures. Energy 2015, 93, 1731–1741. [Google Scholar] [CrossRef]
- Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M.-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 177–184. [Google Scholar] [CrossRef]
- Órfão, J.; Figueiredo, J. A simplified method for determination of lignocellulosic materials pyrolysis kinetics from isothermal thermogravimetric experiments. Thermochim. Acta 2001, 380, 67–78. [Google Scholar] [CrossRef]
- Kocer, A.; Kurklu, A. Production of pellets from pruning residues and determination of pelleting physical properties. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–13. [Google Scholar] [CrossRef]
- Mediavilla, I.; Esteban, L.; Fernández, M. Optimisation of pelletisation conditions for poplar energy crop. Fuel Process. Technol. 2012, 104, 7–15. [Google Scholar] [CrossRef]
- Peng, J.; Wang, J.; Bi, X.T.; Lim, C.J.; Sokhansanj, S.; Peng, H.; Jia, D. Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process. Technol. 2015, 129, 168–173. [Google Scholar] [CrossRef]
- Ramezanzade, M.; Moghaddam, A.G. Optimizing the Production Parameters for Pellets Made from Pistachio Tree Pruning Using Multi-response Optimization. Waste Biomass Valorization 2017, 9, 1213–1221. [Google Scholar] [CrossRef]
- Temmerman, M.; Rabier, F.; Jensen, P.; Hartmann, H.; Bohm, T. Comparative study of durability test methods for pellets and briquettes. Biomass Bioenergy 2006, 30, 964–972. [Google Scholar] [CrossRef]
- Mostafa, M.E.; Hu, S.; Wang, Y.; Su, S.; Hu, X.; Elsayed, S.A.; Xiang, J. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renew. Sustain. Energy Rev. 2019, 105, 332–348. [Google Scholar] [CrossRef]
- Kuranc, A.; Stoma, M.; Rydzak, L.; Pilipiuk, M. Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product. Energies 2020, 13, 5890. [Google Scholar] [CrossRef]
- Woo, D.-G.; Kim, S.H.; Kim, T.H. Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies 2021, 14, 371. [Google Scholar] [CrossRef]
- Tumuluru, J.S. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: Physical properties and specific energy consumption. Energy Sci. Eng. 2015, 3, 327–341. [Google Scholar] [CrossRef]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O. The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- PEMEX, Estadísticas Petroleras: Precio al Público de Productos Petrolíferos. Available online: https://www.pemex.com/ri/Publicaciones/Indicadores%20Petroleros/epublico_esp.pdf (accessed on 13 April 2022).
- CONUEE. Lista de Combustibles 2022 que se Considerarán Para Identificar a los Usuarios con un Patrón de alto Consumo, Así como los Factores Para Determinar las Equivalencias en Términos de Barriles Equivalentes de Petróleo. Available online: https://www.gob.mx/cms/uploads/attachment/file/707880/lista_de_combustibles_y_poderes_calorificos_2022.pdf (accessed on 13 March 2022).
- Martínez-Bravo, R.D.; Masera, O. Perspectivas de disminución de emisiones de carbono en México por el uso de la bioenergía: Panorama actual. Elem. Para Polít. Públicas 2020, 4, 27–42. [Google Scholar]
- Quiñones-Reveles, M.; Ruiz-García, V.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera-Cerutti, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of Pellets from Three Forest Species: From Raw Material to End Use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
- Ruíz-Carmona, O.; Islas-Samperio, J.M.; Larrondo-Posadas, L.; Manzini, F.; Grande-Acosta, G.K.; Álvarez-Escobedo, C. Solid Biofuels Scenarios from Rural Agricultural and Forestry Residues for Mexican Industrial SMEs. Energies 2021, 14, 6560. [Google Scholar] [CrossRef]
Class | Moisture | Ash | Volatile Matter | Fixed Carbon |
---|---|---|---|---|
B | 6.57 ± 0.27 a | 1.22 ± 0.04 a | 83.87 ± 0.64 a | 8.34 ± 0.55 a |
BAL | 7.39 ± 0.26 b | 7.22 ± 0.10 b | 75.80 ± 1.84 b | 9.59 ± 1.96 a |
Biomass | Specification | HHV (MJ/kg) | References |
---|---|---|---|
Avocado | Class B | 19.6 | This study |
Branches | 19.2–19.7 | [9,33] | |
Branches with leaves | 19.7 | [9] | |
Leaves | 20.1 | ||
Other fruit trees (olive, almond, cherry, kiwi, lemon, loquat, orange, apple, pear, hazel, guava, chicozapote and mango | Branches | 16.30–20.27 | [31,38,39,40,41,42,43] |
Pinus spp. | Sawdust | 19.69–19.85 | [39] |
Vid | Branches | 18.95 | [44] |
Class | Cellulose | Hemicellulose | Lignin | Extractives |
---|---|---|---|---|
B | 46.75 ± 1.11 a | 20.62 ± 0.21 a | 14.45 ± 0.87 a | 16.97 ± 0.45 a |
BAL | 37.55 ± 0.53 b | 18.37 ± 0.37 b | 13.62 ± 0.01 a | 23.24 ± 0.15 b |
Class | C | H | O | N | S |
---|---|---|---|---|---|
B | 46.95 | 5.95 | 46.27 | 0.81 | <0.01 |
BAL | 46.26 | 6.01 | 43.84 | 1.98 | 1.88 |
Element | Concentration in Ash (ppm) | Concentration in Fuel (mg/kg) | ||
---|---|---|---|---|
Class B | Class BAL | Class B | Class BAL | |
Ag | ND | ND | ND | ND |
Al | 272.8 | 1066.12 | 3.32 | 77.00 |
As | ND | ND | ND | ND |
B | 61.6 | 156.8 | 0.75 | 11.33 |
Ba | 100.5 | 387 | 1.22 | 27.95 |
Be | ND | ND | ND | ND |
Ca | 1666.68 | 4289.36 | 20.31 | 309.79 |
Cd | 0.5 | 2.4 | 0.01 | 0.17 |
Co | ND | ND | ND | ND |
Cr | 4.1 | 26.2 | 0.05 | 1.89 |
Cu | 948.2 | 1911.68 | 11.55 | 138.07 |
Fe | 1440.17 | 6061.43 | 17.55 | 437.78 |
K | 5017.51 | 12,874.41 | 61.13 | 929.83 |
Li | 5.96 | 65.4 | 0.07 | 4.72 |
Mg | 498.6 | 1289.31 | 6.07 | 93.12 |
Mn | 235.3 | 398.8 | 2.87 | 28.80 |
Mo | ND | ND | ND | ND |
Na | 236.7 | 594.0 | 2.88 | 42.90 |
Ni | 1.2 | 5.6 | 0.01 | 0.40 |
P | 5202.63 | 6640.97 | 63.39 | 479.63 |
Pb | ND | ND | ND | ND |
Sb | ND | ND | ND | ND |
Se | ND | ND | ND | ND |
Si | ND | 616.6 | ND | 44.54 |
Sn | 13.2 | 73.8 | 0.16 | 5.33 |
Sr | 137.7 | 330.7 | 1.68 | 23.88 |
Tl | ND | ND | ND | ND |
V | 0.5 | 2.4 | 0.01 | 0.18 |
Zn | 124.4 | 345.2 | 1.52 | 24.93 |
Cl | 0.51 | 0.17 | 0.006 | 0.012 |
Mesh (mm) | Retained Fraction | Mean Retained Value (%) | Standard Deviation |
---|---|---|---|
3.15 | >3.15 | 7.49 | 1.27 |
2.80 | 2.80–3.15 | 7.00 | 0.63 |
2.00 | 2.00–2.80 | 15.52 | 1.45 |
1.40 | 1.40–2.00 | 17.50 | 1.28 |
1.00 | 1.00–1.40 | 14.94 | 0.26 |
0.50 | 0.50–1.00 | 23.07 | 1.61 |
0.25 | 0.25–0.50 | 10.50 | 2.01 |
Tray | <0.25 | 3.98 | 1.01 |
Parameter | Mean | Standard Deviation |
---|---|---|
Final moisture content (%) | 8.85 | 0.22 |
Particle density (g/cm3) (g/cm3) | 1.19 | 0.02 |
Bulk density (kg/m3) (kg/m3) | 580.97 | 4.14 |
Energy density (GJ/m3) (GJ/m3) | 11.39 | 0.08 |
Mechanical durability (%) | 86.68 | 0.19 |
Property | ENplus [15] (Commercial and Residential Use) | EN 17225-2 [16] (Industrial Use) | Class B Biomass Pellets | |||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | B | I1 | I2 | I3 | |||
Diameter (D, mm) | 6 ± 1 or 8 ± 1 | 6 ± 1 or 8 ± 1 | ● | 6.09 | ||||
Length (L, mm) | 3.15 < L ≤ 45 * | 3.15 < L ≤ 40 * | ● | 15.68 | ||||
Moisture (% wt, as) | ≤10 | ≤10 | ● | 8.31 | ||||
Ash (% wt, db) | ≤0.7 | ≤1.2 | ≤2.0 | ≤1.0 | ≤1.5 | ≤3.0 | 1.2 | |
Mechanical durability (% wt, as) | ≥98.0 | ≥97.5 | ≥97.5 | ≥96.5 | ◊ | 86.7 | ||
Net calorific value (MJ/kg, as) | ≥16.5 | ≥16.5 | ● | 18.11 | ||||
Bulk density (BD, kg/m3, as) | 600 ≤ DA ≤ 750 | ≥600 | ◊ | 580.97 | ||||
N (% wt, db) | ≤0.3 | ≤0.5 | ≤1.0 | ≤0.3 | ≤0.6 | ● | 0.81 | |
S (% wt, db) | ≤0.04 | ≤0.05 | ≤0.05 | ● | <0.01 | |||
As (mg/kg, db) | ≤1 | ≤2 | ● | 0 | ||||
Cd (mg/kg, db) | ≤0.5 | ≤1.0 | ● | 0.006 | ||||
Cr (mg/kg, db) | ≤10 | ≤15 | ● | 0.1 | ||||
Cu (mg/kg, db) | ≤10 | ≤20 | ● | 11.6 | ||||
Pb (mg/kg, db) | ≤10 | ≤20 | ● | 0 | ||||
Hg (mg/kg, db) | ≤0.1 | ≤0.1 | ● | 0 | ||||
Ni (mg/kg, db) | ≤10 | - | ● | 0.01 | ||||
Zn (mg/kg, db) | ≤100 | ≤200 | ● | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria-González, J.A.; Tauro, R.; Alvarado-Flores, J.J.; Berrueta-Soriano, V.M.; Rutiaga-Quiñones, J.G. Avocado Tree Pruning Pellets (Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation. Energies 2022, 15, 7514. https://doi.org/10.3390/en15207514
Soria-González JA, Tauro R, Alvarado-Flores JJ, Berrueta-Soriano VM, Rutiaga-Quiñones JG. Avocado Tree Pruning Pellets (Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation. Energies. 2022; 15(20):7514. https://doi.org/10.3390/en15207514
Chicago/Turabian StyleSoria-González, José Alberto, Raúl Tauro, José Juan Alvarado-Flores, Víctor Manuel Berrueta-Soriano, and José Guadalupe Rutiaga-Quiñones. 2022. "Avocado Tree Pruning Pellets (Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation" Energies 15, no. 20: 7514. https://doi.org/10.3390/en15207514
APA StyleSoria-González, J. A., Tauro, R., Alvarado-Flores, J. J., Berrueta-Soriano, V. M., & Rutiaga-Quiñones, J. G. (2022). Avocado Tree Pruning Pellets (Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation. Energies, 15(20), 7514. https://doi.org/10.3390/en15207514