The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Agricultural Biomass
4.2. Forest Biomass
4.3. Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market, Official Journal L 283, 27/10/2001 P. 0033-0040. Available online: http://europa.eu.int/eur-lex/pri/en/oj/dat/2001/l_283/l_28320011027en00330040.pdf (accessed on 17 October 2022).
- Europian Commision. EU Biodiversity Strategy for 2030; COM (2020) 380 Final; European Commission: Brussels, Belgium, 2020; Available online: https://www.eumonitor.eu/9353000/1/j4nvhdfcs8bljza_j9vvik7m1c3gyxp/vl8tqb8jwtyy (accessed on 10 August 2022).
- Kigle, S.; Ebner, M.; Guminski, A. Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System. Energies 2022, 15, 1334. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Arvizu, D.; Bruckner, T.; Christensen, J.; Devernay, J.-M.; Faaij, A.; Fischedick, M.; et al. Summary for Policy Makers. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlöme, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- European Parliament and the Council: Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; The European Parliament and the Council: Brussels, Belgium, 2009. Available online: https://www.legislation.gov.uk/eudr/2009/28/contents# (accessed on 17 October 2022).
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef] [Green Version]
- Faaij, A.P.C. Repairing What Policy Is Missing Out on: A Constructive View on Prospects and Preconditions for Sustainable Biobased Economy Options to Mitigate and Adapt to Climate Change. Energies 2022, 15, 5955. [Google Scholar] [CrossRef]
- Ceotto, E.; Candilo, M. Sustainable Bioenergy Production, Land and Nitrogen Use. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture; Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 5, pp. 101–122. [Google Scholar] [CrossRef]
- Congress US: Energy Policy Act of 2005; U.S. Congress: Washington DC, USA, 2005. Available online: https://www.epa.gov/laws-regulations/summary-energy-policy-act (accessed on 17 October 2022).
- Congress US: Energy Independence and Security Act of 2007; U.S. Congress: Washington DC, USA, 2007. Available online: https://en.wikipedia.org/wiki/Energy_Independence_and_Security_Act_of_2007 (accessed on 17 October 2022).
- Turkenburg, W.C.; Beurskens, J.; Faaij, A.; Fraenkel, P.; Fridleifsson, I.; Lysen, E.; Mills, D.; Moreira, J.R.; Nilsson, L.J.; Schaap, A.; et al. Renewable Energy Technologies. In World Energy Assessment; Goldemberg, J., Ed.; United Nations Development Programme: New York, NY, USA, 2000. [Google Scholar]
- Da Costa, A.C.A.; Junior, N.P.; Aranda, D.A.G. The situation of biofuels in Brazil: New generation technologies. Renew. Sustain. Energy Rev. 2010, 14, 3041–3049. [Google Scholar] [CrossRef]
- Ministério da Agricultura Pecuária e Abastecimento. Produção Brasileira de Etanol; Ministério da Agricultura Pecuária e Abastecimento: Brasilia, Brasil, 2011.
- Ministério da Agricultura Pecuária e Abastecimento. Balancio Nacional da Cana-de-Acucar e Agroenergia; Ministério da Agricultura Pecuária e Abastecimento: Brasilia, Brasil, 2007.
- Fischer, G.; Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenergy 2001, 20, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sustainability 2010, 2, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Hoogwijk, M.; Faaij, A.; Eickhout, B.; Devries, B.; Turkenburg, W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005, 29, 225–257. [Google Scholar] [CrossRef]
- Alakangas, E.; Heikkinen; Lensu, T.; Vesterinen, P. Biomass Fuel Trade in Europe; VTT: Jyväskylä, Finland, 2007. [Google Scholar]
- Bauen, A.; Woods, J.; Hailes, R. Bioelectricity Vision: Achieving 15% of Electricity from Biomass in OECD Countries by 2020; Imperial College London, Centre for Energy Policy and Technology and E4tech (UK) Ltd.: London, UK, 2004. [Google Scholar]
- Böttcher, H.; Dees, M.; Fritz, S.M.; Goltsev, V.; Gunia, K.; Huck, I.; Lindner, M.; Paappanen, T.; Pekkanen, J.M.; Ramos, C.I.S.; et al. Biomass Energy Europe: Illustration Case for Europe; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2010. [Google Scholar]
- De Wit, M.; Faaij, A.P.C.; Fischer, G.; Prieler, S.; Velthuizen, H.T. Biomass Resources Potential and Related Costs. In The Cost-Supply Potential of Biomass Resources in the EU-27, Switzerland, Norway and the Ukraine; Copernicus Institute, Utrecht University and the International Institute of Applied Systems Analysis: Utrecht, The Netherlands; Laxenburg, Austria, 2008. [Google Scholar]
- Ericsson, K.; Nilsson, L. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.P.B.; Doming, A.; Domingo, G.C. Biomass in the EU Green Deal: Towards Consensus on the Use of Biomass for EU Bioenergy, Policy Report; Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2021. [Google Scholar]
- Fischer, G.; Hiznyik, E.; Prieler, S.; Van Velthuizen, H.T. Assessment of Biomass Potentials for Biofuel Feedstock Production in Europe: Methodology and Results; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2007. [Google Scholar]
- Fischer, G.; Prieler, S.; Van Velthuizen, H.; Berndes, G.; Faaij, A.; Londo, M.; De Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass Bioenergy 2010, 34, 173–187. [Google Scholar] [CrossRef]
- Hall, D.O.; House, J.I. Biomass energy in Western Europe to 2050. Land Use Policy 1995, 12, 37–48. [Google Scholar] [CrossRef]
- Hetsch, S. Potential Sustainable Wood Supply in Europe; United Nations Economic Commission for Europe/Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2009. [Google Scholar]
- Johansson, T.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. Renewable fuels and electricity for a growing world economy. In Renewable Energy-Sources for Fuels and Electricity; Johansson, T.B., Kelly, H., Reddy, A.K.N., Williams, R.H., Eds.; Island Press: Washington DC, USA, 1993; pp. 1–72. [Google Scholar]
- Scarlat, N.; Martinov, M.; Dallemand, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Siemons, R.; Vis, M.; Van den Berg, D.; McChesney, I.; Whiteley, M.; Nikolaou, N. Bio-Energy ’s Role in the EU Energy Market: A View of Developments until 2020; Biomass Technology Group (BTG), Energy for Sustainable Development, Centre for Renewable Energy (CRES): Enshcede, The Netherlands, 2004. [Google Scholar]
- Skytte, K.; Meibom, P.; Henriksen, T.C. Electricity from biomass in the European Union–With or without biomass import. Biomass Bioenergy 2006, 30, 385–392. [Google Scholar] [CrossRef]
- Van Dam, J.; Faaij, A.; Lewandowski, I.; Fischer, G. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass Bioenergy 2007, 31, 345–366. [Google Scholar] [CrossRef] [Green Version]
- RENEW. Renewable Fuels for Advanced Powertrains; SYNCOM Forschungs und Entwicklungsberatung: Ganderkesee, Germany, 2008. [Google Scholar]
- De Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Fischer, G.; Prieler, S.; Van Velthuizen, H.; Lensink, S.M.; Londo, M.; De Wit, M. Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass Bioenergy 2010, 34, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Panoutsou, C.; Eleftheriadis, J.; Nikolaou, A. Biomass supply in EU27 from 2010 to 2030. Energy Policy 2009, 37, 5675–5686. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef]
- World Energy Council. 2010 Survey of Energy Resources; World Energy Council: London, UK, 2010; Available online: https://www.worldenergy.org/publications/entry/world-energy-resources-2010-survey (accessed on 17 October 2022).
- Berndes, G. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Offermann, R.; Seidenberger, T.; Thrän, D.; Kaltschmitt, M.; Zinoviev, S.; Miertus, S. Assessment of global bioenergy potentials. Mitig Adapt. Strateg Glob. Chang. 2011, 16, 103–115. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- European Environment Agency, EU Bioenergy Potential from a Resource-Efficiency Perspective; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-9213-397-9. [CrossRef]
- Energy Supply and Use by NACE Rev. 2 Activity [ENV_AC_PEFASU] Source of Data: Eurostat-Last Updated Date: Thursday, February 17, 2022 11:00 PM. Available online: https://ec.europa.eu/info/legal-notice_en (accessed on 8 September 2022).
- Kjärstad, J.; Johnsson, F. The Role of Biomass to Replace Fossil Fuels in a Regional Energy System. The Case West. Sweden. Thermal Science 2016, 20, 1023–1036. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Łechtańska, P.; Namiecińska, O. Emission of Some Pollutants from Biomass Combustion in Comparison to Hard Coal Combustion. J. Energy Inst. 2017, 90, 787–796. [Google Scholar] [CrossRef]
- Harrison, J.; On, E. Stirling Engine Systems for Small and Micro Combined Heat and Power (CHP) Applications. In Small and Micro Combined Heat and Power (CHP) Systems; Beith, R., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 179–205. [Google Scholar] [CrossRef]
- Uris, M.; Linares, J.I.; Arenas, E. Feasibility Assessment of an Organic Rankine Cycle (ORC) Cogeneration Plant (CHP/CCHP) Fueled by Biomass for a District Network in Mainland Spain. Energy 2017, 133, 969–985. [Google Scholar] [CrossRef]
- Cazzaniga, N.E.; Jonsson, R.; Palermo, D.; Camia, A. Sankey Diagrams of Woody Biomass Flows in the EU-28; EC Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Cazzaniga, N.E.; Jonsson, R.; Pilli, R.; Camia, A. Wood Resource Balances of EU-28 and Member States; EC Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Joint Forest Sector Questionnaire: Final 2021 Data. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fcdn.forestresearch.gov.uk%2F2022%2F02%2Fjqoct22web.xlsx&wdOrigin=BROWSELINK (accessed on 28 November 2022).
- Scarlat, N.; Dallemand, J.-F.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union. 2019. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109354 (accessed on 30 October 2022).
- Henry, R.J. Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol. J. 2010, 8, 288–293. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859252/, (accessed on 2 September 2022). [CrossRef] [PubMed] [Green Version]
- Biomass in the EU Green Deal; Institute for European Environmental Policy: Brussels, Belgium, 2021; Available online: https://ieep.eu/uploads/articles/attachments/a14e272d-c8a7-48ab-89bc-31141693c4f6/Bimass%20in%20the%20EU%20Green%20Deal.pdf?v=63804370211 (accessed on 29 October 2022).
- Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 Concerning Common Rules for the Internal Market in Electricity. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0054 (accessed on 15 October 2022).
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/eli/dir/2009/28/oj (accessed on 15 October 2022).
- Kowalik, P. Use of biomass as an energy feedstock. In Thermochemical Processing of Coal and Biomasy; Ściążko, M., Zieliński, H., Eds.; Wyd. Instytutu Chemicznej Przeróbki Węgla: Kraków, Poland, 2003; pp. 39–41. [Google Scholar]
- Mirowski, T.; Mokrzycki, E.; Uliasz-Bocheńczyk, A. Energy Use of Biomass; IGSMiE PAN KRAKÓW 2018; Instytut Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. ISBN 978-83-62922-94-9. Available online: https://min-pan.krakow.pl/wydawnictwo/wp-content/uploads/sites/4/2019/09/2018-biomasa-wer-z-licencj%C4%85_fin.pdf (accessed on 8 September 2022).
- Hamzat, A.; Yakubu Gombe, S.; Pindiga, Y. Briquette from Agricultural Waste a Sustainable Domestic Cooking Energy. Gombe Tech. Educ. J. 2019, 12, 63–69. Available online: https://www.researchgate.net/publication/353295231_Briquette_from_Agricultural_Waste_a_Sustainable_Domestic_Cooking_Energy (accessed on 5 September 2022).
- Koryś, K.A.; Latawiec, A.E.; Grotkiewicz, K.; Kuboń, M. The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability 2019, 11, 6515. [Google Scholar] [CrossRef]
- Mydlarz, K.; Wieruszewski, M. Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes. Energies 2022, 15, 1337. [Google Scholar] [CrossRef]
- Beurskens, L.W.M.; Hekkenberg, M. Renewable Energy Projections as Published in the National Renewable Energy Action Plans of the European Member States; Energy Research Centre of the Netherlands and European Environment Agency: Petten, The Netherlands, 2011; Available online: http://www.ecn.nl/nreap (accessed on 2 November 2022).
- Marczak, P. Use of Animal Fat as Biofuel-Selected Issues: Topical Studies OT-589; Warszawa 2010; Kancelaria Senatu Biuro Analiz i Dokumentacji Dział Analiz i Opracowań Tematycznych. Available online: https://www.senat.gov.pl/gfx/senat/pl/senatopracowania/101/plik/ot-589.pdf (accessed on 8 September 2022).
- Rogner, H.; Barthel, F.; Cabrera, M.; Faaij, A.; Giroux, M.; Hall, D.O.; Kagramanian, V.; Kononov, S.; Lefevre, T.; Moreira, R.; et al. Energy Resources. In World Energy Assessment: Energy and the Challenge of Sustainability; Goldemberg, J., Ed.; United Nations Development Programme: New York, NY, USA, 2000. [Google Scholar]
- Gostomczyk, W. Organization of the Logistics System in the Production and Use of Energy Biomass; Koszalin University of Technology: Koszalin, Poland, 2012; Volume 4/2. [Google Scholar]
- Edrisi, S.A.; Abhilash, P.C. Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537–1551. [Google Scholar] [CrossRef]
- Bridgwater, A.; Toft, A.; Brammer, J. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 2002, 6, 181–246. [Google Scholar] [CrossRef]
- Kozakiewicz, P. Physics of Wood in Theory and Tasks; SGGW: Warsaw, Poland, 2012; ISBN 978-83-7583-356-0. [Google Scholar]
- Czekała, W.; Bartnikowska, S.; Fiszer, A.; Olszewska, A.; Kaniewski, J. Processing of carpentry residue into solid biofuels: Energetic and economic analysis. Arch. Waste Manag. Environ. Protect. 2015, 17/4, 59–66. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency: Energy Technology Perspectives 2008. Paris, FR: International Energy Agency. 2008. Available online: https://iea.blob.core.windows.net/assets/0e190efb-daec-4116-9ff7-ea097f649a77/etp2008.pdf (accessed on 10 November 2022).
- Resch, G.; Held, A.; Faber, T.; Panzer, C.; Toro, F.; Haas, R. Potentials and prospects for renewable energies at global scale. Energy Policy 2008, 36, 4048–4056. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Górna, A.; Mydlarz, K.; Adamowicz, K. Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material. Energies 2022, 15, 4897. [Google Scholar] [CrossRef]
- Mandley, S.; Wicke, B.; Junginger, H.; Van Vuuren, D.; Daioglou, V. Integrated assessment of the role of bioenergy within the EU energy transition targets to 2050. GCB Bioenergy 2022, 14, 157–172. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; Van den Broek, M. Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe. Energy Policy 2021, 149, 111987. [Google Scholar] [CrossRef]
- Mantau, U. Biomass Supply Potentials for the EU and Biomass Demand from the Material Sector by 2030; Final Report; PricewaterhouseCoopers EU Services EESV’s Consortium: London, UK, 2016. [Google Scholar]
- Gurría, P.; González, H.; Ronzon, T.; Tamosiunas, S.; López, R.; García Condado, S.; Ronchetti, G.; Guillén, J.; Banja, M.; Fiore, G.; et al. Biomass flows in the European Union; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- IEA Bioenergy Countries’ Report—Update 2021 Implementation of Bioenergy in the IEA Bioenergy Member Countries; IEA Bioenergy ExCo November 2021; Luc Pelkmans, Technical Coordinator; IEA Bioenergy TCP: Paris, France; ISBN 978-1-910154-93-9.
- Van Vuuren, D.P.; Van Vliet, J.; Stehfest, E. Future bio-energy potential under various natural constraints. Energy Policy 2009, 37, 4220–4230. [Google Scholar] [CrossRef]
- Nabuurs, G.; Pussinen, A.; van Brusselen, J.; Schelhaas, M. Future harvesting pressure on European forests. Eur J. For. Res. 2006, 126, 391–400. [Google Scholar] [CrossRef]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 2011, 4, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Cockerill, S.; Martin, C. Are biofuels sustainable? The EU perspective. Biotechnol Biofuels 2008, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Rotterdam Coal Futures Chart. Available online: https://pl.investing.com/commodities/rotterdam-coal-futures-streaming-chart (accessed on 25 October 2022).
- Hoogwijk, M.; Faaija, A.; van den Broeka, R.; Berndesb, G.; Dolf Gielenc, D.; Turkenburg, W. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 2003, 25, 119–133. [Google Scholar] [CrossRef]
- Share of Energy from Renewable Sources. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_ren/default/table?lang=en (accessed on 12 October 2022).
- Hakala, E.; Lähde, V.; Majava, A.; Toivanen, T.; Vadén, T.; Järvensivu, P.; Eronen, J.T. Northern Warning Lights: Ambiguities of Environmental Security in Finland and Sweden. Sustainability 2019, 11, 2228. [Google Scholar] [CrossRef] [Green Version]
- Schmid, L. Another State Is Possible—Greening the Sources of Power. Available online: https://www.greeneuropeanjournal.eu/inne-panstwo-jest-mozliwe-zazielenianie-zrodel-wladzy/ (accessed on 28 November 2022).
- Mikuła, A.; Raczkowska, M.; Utzig, M. Pro-Environmental Behaviour in the European Union Countries. Energies 2021, 14, 5689. [Google Scholar] [CrossRef]
- Eurostat: EnergyMixDependencyImportsRussia-10MARCH2022 REV. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:EnergyMixDependencyImportsRussia-10MARCH2022_REV_update.xlsx (accessed on 10 November 2022).
- European Commision. Energy Supply and Use by NACE Rev. 2 Activity [ENV_AC_PEFASU$DEFAULTVIEW]. Available online: http://ec.europa.eu/eurostat/web/products-datasets/-/env_ac_pefasu (accessed on 12 October 2022).
- Krasuska, E.; Cadórniga, C.; Tenorio, J.L.; Testa, G.; Scordia, D. Potential land availability for energy crops production in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 658–673. [Google Scholar] [CrossRef]
- Eurostat. Farmland: Number of Farms and Areas by Size of Farm (UAA) and Region; Eurostat: Brussels, Belgium, 2011. [Google Scholar]
- Daioglou, V.; Doelman, J.C.; Wicke, B.; Faaij, A.; Van Vuuren, D.P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 2019, 54, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Biomass and Agriculture: Sustainability, Markets and Policies; OECD: Paris, France, 2004; Available online: https://vdoc.pub/download/biomass-and-agriculture-sustainability-markets-and-policies-5etfsvelmih0 (accessed on 10 August 2022).
- Janiszewska, D.; Ossowska, L. Diversification of European Union Member States due to the production of renewable energy from agriculture and forestry. Probl. World Agric. 2018, 18, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Gokcol, C.; Dursun, B.; Alboyaci, B.; Sunan, E. Importance of biomass energy as alternative to other sources in Turkey. Energy Policy 2009, 37, 424–431. [Google Scholar] [CrossRef]
- Muscat, A.; de Olde, E.M.; Kovacic, Z.; de Boer, I.J.M.; Ripoll-Bosch, R. Food, energy or biomaterials? Policy coherence across agro-food and bioeconomy policy domains in the EU. Environ. Sci. Policy 2021, 123, 21–30. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzecka, M.; Kozak, M.; Pudełko, R.A. Spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Kluts, I.; Wicke, B.; Leemans, R.; Faaij, A. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew. Sustain. Energy Rev. 2017, 69, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Haase, M.; Rösch, C.; Ketzer, D. GIS-based assessment of sustainable crop residue potentials in European regions. Biomass Bioenergy 2016, 86, 156–171. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Astrup, T.F. Environmental implications of the use of agroindustrial residues for biorefineries: Application of a deterministic model for indirect land-use changes. GCB Bioenergy 2016, 8, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 2014, 114, 774–782. [Google Scholar] [CrossRef]
- European Commission. Energy for the Future: Renewable Sources of Energy, White Paper for a Community Strategy and Action Plan, COM(97)599 Final 26/11/1997. Available online: http://europa.eu.int/comm/energy/library/599fi_en.pdf (accessed on 17 September 2022).
- Directive 2018/2001/EC of the European Parliament and of the Council of 11 December September 2018 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market, Official Journal L 328/82, PE/48/2018/REV/1. Available online: http://data.europa.eu/eli/dir/2018/2001/oj (accessed on 17 November 2022).
- Elbersen, B.; Startisky, I.; Hengeveld, G.; Schelhaas, M.-J.; Naeff, H.; Bottcher, H. Atlas of EU Biomass Potentials. 2012. Available online: http://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/biomass_futures_atlas_of_technical_and_economic_biomass_potential_en.pdf (accessed on 20 August 2022).
- Sustainable Biomass Availability in the EU to 2050. Imperial College, London 2021. Available online: https://www.concawe.eu/publication/sustainable-biomass-availability-in-the-eu-to-2050/ (accessed on 20 August 2022).
- Agriculture, Forestry and Fishery Statistics—Statistical Books Eurostat; Luxemburg, European Union 2020. Corine cover 2018, European Environment Agency (EFA). Available online: https://ec.europa.eu/eurostat/documents/3217494/12069644/KS-FK-20-001-EN-N.pdf/a7439b01-671b-80ce-85e4-4d803c44340a?t=1608139005821 (accessed on 20 November 2022).
- EU Agricultural Outlook 2021-31: Lower Demand for Feed to Impact Arable Crops. December 2021. Available online: https://agriculture.ec.europa.eu/news/eu-agricultural-outlook-2021-31-lower-demand-feed-impact-arable-crops-2021-12-09_en (accessed on 19 October 2022).
- Eurostat, FAO, ITTO, and UNECE, 2017. Joint Forest Sector Questionnaire 2017—Definitions. Eurostat. Available online: https://circabc.europa.eu/sd/a/c8c83831-84f1-4ba2-966de7ee87b2b170/Definitions%20in%20English%20-%20JFSQ%202017.doc (accessed on 20 November 2022).
- FAOSTAT. ResourceSTAT; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Mantau, U.; Saal, U.; Prins, K.; Steierer, F.; Lindner, M.; Verkerk, H.; Eggers, J.; Leek, N.; Oldenburger, J.; Asikainen, A.; et al. EUwood—Real Potential for Changes in Growth and Use of EU Forests; University of Hamburg: Hamburg, Germany, 2010. [Google Scholar]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- IPBES Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental SciencePolicy Platform on Biodiversity and Ecosystem Services—Advance Unedited Version. 2019. Available online: https://ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf (accessed on 3 February 2020).
- Felton, A.; Gustafsson, L.; Roberge, J.-M.; Ranius, T.; Hjältén, J.; Rudolphi, J. How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biol. Conserv. 2016, 194, 11–20. [Google Scholar] [CrossRef]
- Plas, F.; van der Manning, P.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Hector, A.; Ampoorter, E.; Baeten, L.; et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Petrauskas, E.; Kuliešis, A. Scenario-based analysis of possible management alternatives for Lithuanian forests in the 21st century. Balt. For. 2004, 10, 11. [Google Scholar]
- Knoke, T.; Messerer, K.; Paul, C. The role of economic diversification in forest ecosystem management. Curr. For. Rep. 2017, 3, 93–106. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.M.; Ranius, T.; Ahlström, M.; Bergh, J.; Björkman, C.; Boberg, J.; et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 2016, 45, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.J.; De Bruyn, L.U.C.; Fuhr, M.; Grandin, U.; et al. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Coomes, D.A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecol. Lett. 2014, 17, 1560–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.M. A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63, 49–61. [Google Scholar] [CrossRef]
- Biber, P.; Borges, J.G.; Moshammer, R.; Barreiro, S.; Botequim, B.; Brodrechtova, Y.; Brukas, V.; Chirici, G.; Cordero-Debets, R.; Corrigan, E.; et al. How sensitive are ecosystem services in european forest landscapes to silvicultural treatment? Forests 2015, 6, 1666–1695. [Google Scholar] [CrossRef] [Green Version]
- Bugalho, M.N.; Dias, F.S.; Briñas, B.; Cerdeira, J.O. Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agrofor. Syst. 2016, 90, 35–44. [Google Scholar] [CrossRef]
- Dieler, J.; Uhl, E.; Biber, P.; Müller, J.; Rötzer, T.; Pretzsch, H. Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur. J. For. Res. 2017, 136, 739–766. [Google Scholar] [CrossRef]
- Felton, A.; Löfroth, T.; Angelstam, P.; Gustafsson, L.; Hjältén, J.; Felton, A.M.; Simonsson, P.; Dahlberg, A.; Lindbladh, M.; Svensson, J.; et al. Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio 2020, 49, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Harrison, P.A.; Berry, P.M.; Simpson, G.; Haslett, J.R.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamănă, N.; et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Whittingham, M.J. The future of agri-environment schemes: Biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 2011, 48, 509–513. [Google Scholar] [CrossRef]
- Pukkala, T. Does biofuel harvesting and continuous cover management increase carbon sequestration? For. Policy Econ. 2014, 43, 41–50. [Google Scholar] [CrossRef]
- Peckham, S.D.; Gower, S.T.; Buongiorno, J. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S. Carbon Balance Manag. 2012, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzelepi, V.; Zeneli, M.; Kourkoumpas, D.-S.; Karampinis, E.; Gypakis, A.; Nikolopoulos, N.; Grammelis, P. Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review. Energies 2020, 13, 3390. [Google Scholar] [CrossRef]
- Mandley, S.J.; Daioglou, V.; Junginger, H.M.; Van Vuuren, D.P.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy Rev. 2020, 127, 109858. [Google Scholar] [CrossRef]
- Gurria, P.; Gonzalez Hermoso, H.; Cazzaniga, N.; Gediminas Jasinevicius, G.; Mubareka, S.; De Laurentiis, V.; Caldeira, C.; Sala, S.; Ronchetti, G.; Guillén, J.; et al. EU Biomass Flows; Publications Office of the EU: Luxembourg, 2022. [Google Scholar] [CrossRef]
- De Vries, B.J.M.; Van Vuuren, D.P.; Hoogwijk, M.M. Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy 2007, 35, 2590–2610. [Google Scholar] [CrossRef] [Green Version]
- Doornbosch, R.; Steenblik, R. Biofuels: Is the Cure Worse Than the Disease? Paris, France: Organisation for Economic Co-Operation and Development. 2007. Available online: https://www.oecd.org/sd-roundtable/papersandpublications/39348696.pdf (accessed on 10 October 2022).
- Dornburg, V.; Faaij, A.; Verweij, P.; Langeveld, H.; Gvd, V.; Wester, F.; Hv, K.; Kv, D.; Meeusen, M.; Banse, M.; et al. Assessment of Global Biomass Potentials and Their Links to Food, Water, Biodiversity, Energy Demand and Economy; Utrecht University: Utrecht, The Netherlands, 2008. [Google Scholar]
- Dornburg, V.; van Vuuren, D.; van de Ven, G.; Langeveld, H.; Meeusen, M.; Banse, M.; van Oorschot, M.; Ros, J.; Jan van den Born, G.; Aiking, H.; et al. Bioenergy revisited: Key factors in global potentials of bioenergy. Energy Environ. Sci. 2010, 3, 258–267. [Google Scholar] [CrossRef]
- Field, C.; Campbell, J.; Lobell, D. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef]
- Ruiz, P.; Nijs, W.; Tarvydas, D.; Sgobbi, A.; Zucker, A.; Pilli, R.; Thrän, D. ENSPRESO—An open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strat. Rev. 2019, 26, 100379. [Google Scholar] [CrossRef]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Purposes in the EU; EUR 30548 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-27867-2. [Google Scholar] [CrossRef]
- Commission, E. Energy 2020 A Strategy for Competitive, Sustainable and Secure Energy; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Fujino, J.; Yamaji, K.; Yamamoto, H. Biomass-Balance Table for evaluating bioenergy resources. Appl. Energy 1999, 63, 75–89. [Google Scholar] [CrossRef]
- State of Europe’s Forests 2020. Available online: https://foresteurope.org/state-of-europes-forests/ (accessed on 30 October 2022).
- FAOSTAT Forestry Production and Trade. 2018. Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 10 October 2022).
- EU Wood Pellet Annual, 2022; Prepared by: Bob Flach and Sophie Bolla. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=EU%20Wood%20Pellet%20Annual_The%20Hague_European%20Union_E42022-0049.pdf (accessed on 2 November 2022).
- Poland, T.M.; Rassati, D. Improved biosecurity surveillance of non-native forest insects: A review of current methods. J. Pest Sci. 2019, 92, 37–49. [Google Scholar] [CrossRef]
- Jactel, H.; Desprez-Loustau, M.L.; Battisti, A.; Brockerhoff, E.; Santini, A.; Stenlid, J.; Zalucki, M.P. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota 2020, 58, 107. [Google Scholar] [CrossRef]
- Schubert, R.; Schellnhuber, H.J.; Buchmann, N.; Epiney, A.; Grießhammer, R.; Kulessa, M.; Messner, D.; Rahmstorf, S.; Schmid, J. Future Bioenergy and Sustainable Land Use; Earthscan: London, UK, 2009. [Google Scholar]
- Rettenmaier, N.; Schorb, A.; Köppen, S.; Berndes, G.; Christou, M.; Dees, M.; Domac, J.; Eleftheriadis, I.; Goltsev, V.; Kajba, D.; et al. Status of Biomass Resource Assessments, Version 3; University of Freiburg, Department of Remote Sensing and Landscape Information Systems: Freiburg, Germany, 2010. [Google Scholar]
- Asikainen, A.; Liiri, H.; Peltola, S.; Karjalainen, T.; Laitila, J. Forest Energy Potential in Europe (EU27); Finnish Forest Research Institute: Helsinki, Finland, 2008.
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN Sustainable Development Goals (SDGs). J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- Rivera-Cadavid, L.; Manyoma-Velásquez, P.C.; Manotas-Duque, D.F. Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR). Sustainability 2019, 11, 6565. [Google Scholar] [CrossRef] [Green Version]
- Blair, M.J.; Gagnon, B.; Klain, A.; Kulišić, B. Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land 2021, 10, 181. [Google Scholar] [CrossRef]
- Capron, M.E.; Stewart, J.R.; de Ramon N’Yeurt, A.; Chambers, M.D.; Kim, J.K.; Yarish, C.; Jones, A.T.; Blaylock, R.B.; James, S.C.; Fuhrman, R.; et al. Restoring Pre-Industrial CO2 Levels While Achieving Sustainable Development Goals. Energies 2020, 13, 4972. [Google Scholar] [CrossRef]
- European Biomass Associtation. Forest Sustainability and Carbon Balance of EU Importation of North American Forest Biomass for Bioenergy Production; Aebiom: Brussels, Belgium, 2013. [Google Scholar]
- Stenzel, F.; Greve, P.; Lucht, W.; Tramberend, S.; Wada, Y.; Gerten, D. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Kircher, M. The transition to a bio-economy: Emerging from the oil age. Biofuel Bioprod. Bior. 2012, 6, 369–375. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.; O’sullivan, M.; Andrew, R.; Hauck, J.; Peters, G.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy efficiency in the long run in the selected European countries. Econ. Sociol 2018, 11, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Bordelanne, O.; Montero, M.; Bravin, F.; Prieur-Vernat, A.; Oliveti-Selmi, O.; Pierre, H.; Papadopoulo, M.; Muller, T. Biomethane CNG hybrid: A reduction by more than 80% of the greenhouse gases emissions compared to gasoline. J. Nat. Gas. Sci. Eng. 2011, 3, 617–624. [Google Scholar] [CrossRef]
- Kabir, M.M.; Rajendran, K.; Taherzadeh, M.J.; Sárvári Horváth, I. Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour. Technol. 2015, 178, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Karimi, K.; Zilouei, H.; Taherzadeh, M.J. Enhanced ethanol and biogas production from pinewood by NMMO pretreatment and detailed biomass analysis. Biomed. Res. Int. 2014, 2014, 469378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Carvalho, L.; Wopienka, E.; Pointner, C.; Lundgren, J.; Verma, V.K.; Haslinger, W.; Schmidl, C. Performance of a pellet boiler fired with agricultural fuels. Appl. Energy 2013, 104, 286–296. [Google Scholar] [CrossRef]
- Picchi, G.; Silvestri, S.; Cristoforetti, A. Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): Comparison to wood chips and means of polluting emissions control. Fuel 2013, 113, 43–49. [Google Scholar] [CrossRef]
Types and Sources of Biomass | Primary Biomass | Secondary Biomass 1 |
---|---|---|
Vegetal agricultural biomass | grassy energy crops (giant miscanthus, Virginia mallow); timberland (willow, poplar, black locust, and others) | cereal, rapeseed, and grass straws; organic residue from food industry; cereal grains, sugar crops, oilseeds, other crops, and by-products from crops |
Vegetal forest biomass | firewood | logging residues, wood shavings, sawdust, wood chips, others, including wastepaper and waste generated by wood-processing plants |
Animal biomass | manure and slurry; fats and bone meal |
Vegetal Biomass 1 | Animal Biomass | |
---|---|---|
Agricultural Biomass | Forest Biomass | |
briquettes pellets biogas | briquettes pellets woodchips from woody plants in plantations | biogas |
NACE_R2 (Labels) | Energy Products 1 | Wood, Wood Waste and Other Solid Biomass, Charcoal 1 | Liquid Biofuels | Biogas |
---|---|---|---|---|
TJ | ||||
Total—all NACE activities | 1,946,381.0 | 48,271.4 | 13,312.0 | 6677.7 |
Agriculture, forestry, and fishing | 54,319.3 | 46,454.8 | 0 | 0 |
Manufacturing | 1,580,356.0 | 1816.6 | 13,312.0 | 0 |
Electricity, gas, steam, and air conditioning supply | 292,363.2 | 0 | 0 | 0 |
Water supply; sewerage, waste management, and remediation activities | 14,990.6 | 0 | 0 | 6677.7 |
Construction | 98.4 | 0 | 0 | 0 |
Wholesale and retail trade; repair of motor vehicles and motorcycles | 40.1 | 0 | 0 | 0 |
Accommodation and food service activities | 7.4 | 0 | 0 | 0 |
Public administration and defense; compulsory social security | 42.5 | 0 | 0 | 0 |
Education | 3934.0 | 0 | 0 | 0 |
Human health and social work activities | 229.7 |
Area | Farmland (Housand Hectares) 1 | Land area (Housand Hectares) 1 | Percentage of Agricultural Land in Total Area % | Forest and Other Wooded Land (Housand Hectares) 1 | Percentage of Agricultural Land in Total Area % |
---|---|---|---|---|---|
Belgium | 1354.3 | 3045.1 | 44 | 722 | 24 |
Bulgaria | 4468.5 | 11,000.1 | 41 | 3917 | 36 |
Czechia | 3455.4 | 7721.2 | 45 | 2677 | 35 |
Denmark | 2614.6 | 4198.7 | 62 | 665 | 16 |
Germany | 16,715.3 | 35,329.6 | 47 | 11,419 | 32 |
Estonia | 995.1 | 4346.6 | 23 | 2533 | 58 |
Ireland | 4883.7 | 6865.5 | 71 | 848 | 12 |
Greece | 4553.8 | 13,004.8 | 35 | 6537 | 50 |
Spain | 23,229.8 | 50,265.4 | 46 | 27,954 | 56 |
France | 27,814.2 | 63,388.6 | 44 | 18,096 | 29 |
Croatia | 1563.0 | 5589.6 | 28 | 2557 | 46 |
Italy | 12,598.2 | 29,773.4 | 42 | 11,432 | 38 |
Cyprus | 111.9 | 921.3 | 12 | 386 | 42 |
Latvia | 1930.9 | 6329.0 | 31 | 3519 | 56 |
Lithuania | 2924.6 | 6264.3 | 47 | 2263 | 36 |
Luxembourg | 130.7 | 258.6 | 51 | 91 | 35 |
Hungary | 4670.6 | 9124.8 | 51 | 2253 | 25 |
Malta | 11.1 | 31.3 | 35 | 1 | 3 |
Netherlands | 1796.3 | 3418.8 | 53 | 370 | 11 |
Austria | 2669.8 | 8251.9 | 32 | 4029 | 49 |
Poland | 14,405.7 | 30,723.6 | 47 | 9483 | 31 |
Portugal | 3641.7 | 9099.6 | 40 | 4855 | 53 |
Romania | 12,502.5 | 23,427.0 | 53 | 6945 | 30 |
Slovenia | 488.4 | 2014.5 | 24 | 1265 | 63 |
Slovakia | 1889.8 | 4870.2 | 39 | 1946 | 40 |
Finland | 2233.1 | 30,431.6 | 7 | 23,155 | 76 |
Sweden | 3012.6 | 40,730.0 | 7 | 30,344 | 75 |
Total | 156,665.6 | 41,425.1 | 38 | 180,262 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. https://doi.org/10.3390/en15249601
Wieruszewski M, Mydlarz K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies. 2022; 15(24):9601. https://doi.org/10.3390/en15249601
Chicago/Turabian StyleWieruszewski, Marek, and Katarzyna Mydlarz. 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources" Energies 15, no. 24: 9601. https://doi.org/10.3390/en15249601
APA StyleWieruszewski, M., & Mydlarz, K. (2022). The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies, 15(24), 9601. https://doi.org/10.3390/en15249601