Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
- From 1 January to 31 January–maintenance of the damming level in the reservoir at a level of 116.00–116.30 m a.s.l.;
- From 1 February to 15 April–filling the reservoir during the winter-spring river flooding, up to regular damming level of –120.00 m a.s.l.;
- From 16 April to 15 September–maintenance of a constant damming level reached during filling the reservoir, but not higher than 120.00 m a.s.l.;
- From 16 September to 31 December–gradual emptying of the reservoir, aimed at reaching a level of 116.0–116.30 m a.s.l. for the purpose of preparation for the spring flooding.
2.2. Materials
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Apata, O.; Adebayo, A.V.; Ainah, P.K. Renewable energy systems and the fourth industrial revolution. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 23–27 August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- He, P.; Ni, X. Renewable Energy Sources in the Era of the Fourth Industrial Revolution: A Perspective of Civilization Development. J. Phys. Conf. Ser. 2022, 2301, 012030. [Google Scholar] [CrossRef]
- Nasiri, E.; Rocha-Meneses, L.; Inayat, A.; Kikas, T. Impact of Policy Instruments in the Implementation of Renewable Sources of Energy in Selected European Countries. Sustainability 2022, 14, 6314. [Google Scholar] [CrossRef]
- Bórawski, P.; Wyszomierski, R.; Bełdycka-Bórawska, A.; Mickiewicz, B.; Kalinowska, B.; Dunn, J.W.; Rokicki, T. Development of Renewable Energy Sources in the European Union in the Context of Sustainable Development Policy. Energies 2022, 15, 1545. [Google Scholar] [CrossRef]
- Mazurek-Czarnecka, A.; Rosiek, K.; Salamaga, M.; Wąsowicz, K.; Żaba-Nieroda, R. Study on Support Mechanisms for Renewable Energy Sources in Poland. Energies 2022, 15, 4196. [Google Scholar] [CrossRef]
- Killingtveit, Å. Hydroelectric power. In Future Energy: Improved, Sustainable and Clean Options for Our Planet; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–330. [Google Scholar]
- Shaktawat, A.; Vadhera, S. Risk management of hydropower projects for sustainable development: A review. Environ. Dev. Sustain. 2021, 23, 45–76. [Google Scholar] [CrossRef]
- Larosa, F.; Rickman, J.; Ameli, N. Finding the right partners? Examining inequalities in the global investment landscape of hydropower. Glob. Environ. Chang. 2022, 74, 102518. [Google Scholar]
- Gernaat, D.E.H.J.; Bogaart, P.W.; Vuuren, D.P.V.; Biemans, H.; Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2017, 2, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Tefera, W.M.; Kasiviswanathan, K.S. A global-scale hydropower potential assessment and feasibility evaluations. Water Resour. Econ. 2022, 38, 100198. [Google Scholar] [CrossRef]
- Garrett, K.; McManamay, R.A.; Wang, J. Global hydropower expansion without building new dams. Environ. Res. Lett. 2021, 16, 114029. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Kozłowski, M. The increasing of maximum lake water temperature in lowland lakes of central Europe: Case study of the Polish Lakeland. Ann. De Limnol. 2019, 55, 6. [Google Scholar] [CrossRef]
- Turner, S.W.D.; Hejazi, M.; Kim, S.H.; Clarke, L.; Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 2017, 141, 2081–2090. [Google Scholar] [CrossRef]
- Hamududu, B.; Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 2012, 5, 305–322. [Google Scholar] [CrossRef] [Green Version]
- Wasti, A.; Ray, P.; Wi, S.; Folch, C.; Ubierna, M.; Karki, P. Climate change and the hydropower sector: A global review. Wiley Interdiscip. Rev. Clim. Chang. 2022, 13, e757. [Google Scholar] [CrossRef]
- Paltán, H.A.; Pant, R.; Plummer Braeckman, J.; Dadson, S.J. Increased water risks to global hydropower in 1.5 °C and 2.0 °C Warmer Worlds. J. Hydrol. 2021, 599, 126503. [Google Scholar]
- Wagner, B.; Hauer, C.; Habersack, H. Current hydropower developments in Europe. Curr. Opin. Environ. Sustain. 2019, 37, 41–49. [Google Scholar] [CrossRef]
- Kałuża, T.; Hämmerling, M.; Zawadzki, P.; Czekała, W.; Kasperek, R.; Sojka, M.; Mokwa, M.; Ptak, M.; Szkudlarek, A.; Czechlowski, M.; et al. The hydropower sector in Poland: Actual state and the outlook for the future. Renew. Sustain. Energy Rev. 2022, 163, 112500. [Google Scholar] [CrossRef]
- Gaudard, L.; Romerio, F. The future of hydropower in Europe: Interconnecting climate, markets and policies. Environ. Sci. Policy 2014, 37, 172–181. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics; Hafner Publising Company: New York, NY, USA, 1966. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Fryzlewicz, P. Wild binary segmentation for multiple change-point detection. Ann. Stat. 2014, 42, 2243–2281. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N.; Muthiah, K. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests; Version 1.6. 2020. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 1 September 2022).
- Baranowski, R.; Fryzlewicz, P. Multiscale autoregression on adaptively detected timescales. In Proceedings of the 12th International Conference of the ERCIM WG on Computational and Methodological Statistics, London, UK, 14–16 December 2019. [Google Scholar]
- Bulletin of the National Hydrological and Meteorological Service; Pawelec, W.; Pietrzykowska, A.; Wereski, S. (Eds.) The Institute of Meteorology and Water Management—National Research Institute: Warszawa, Poland, 2022. [Google Scholar]
- Kędziora, A. Water balance of Konin strip mine land scape in changing climatic conditions. Rocz. Glebozn. 2008, 59, 104–118, (In Polish with English summary). [Google Scholar]
- Kędziora, A. Climatic conditions and water balance of the Kujawy Lakeland. Rocz. Glebozn. 2011, 62, 189–203, (In Polish with English summary). [Google Scholar]
- Choiński, A.; Ławniczak, A.; Ptak, M. Changes in water resources of Polish lakes as influenced by natural and anthropogenic factors. Pol. J. Environ. Stud. 2016, 25, 1883–1890. [Google Scholar] [CrossRef]
- Nowak, B.; Przybyłek, J. Recharge and drainage of lakes in Powidzki Landscape Park in the conditions of increased anthropogenic and environmental pressure (Central-Western Poland). Geol. Q. 2020, 64, 205–219. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Kang, Y. Will Poland fulfill its coal commitment by 2030? An answer based on a novel time series prediction method. Energy Rep. 2020, 6, 1760–1767. [Google Scholar]
- Skoulikaris, C. Run-of-river small hydropower plants as hydro-resilience assets against climate change. Sustainability 2021, 13, 14001. [Google Scholar] [CrossRef]
- Nonki, R.M.; Lenouo, A.; Tchawoua, C.; Lennard, C.J.; Amoussou, E. Impact of climate change on hydropower potential of the Lagdo dam, Benue River Basin, Northern Cameroon. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 337–342. [Google Scholar] [CrossRef]
- Huangpeng, Q.; Huang, W.; Gholinia, F. Forecast of the hydropower generation under influence of climate change based on RCPs and Developed Crow Search Optimization Algorithm. Energy Rep. 2021, 7, 385–397. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Kałuża, T.; Choiński, A.; Nowak, B. Long-term water temperature trends of the Warta River in the years 1960–2009. Ecohydrol. Hydrobiol. 2019, 19, 441–451. [Google Scholar] [CrossRef]
- Kim, S.J.; Asadzadeh, M.; Stadnyk, T.A. Climate change impact on water supply and hydropower generation potential in Northern Manitoba. J. Hydrol. Reg. Stud. 2022, 41, 101077. [Google Scholar] [CrossRef]
- Mutsindikwa, T.C.; Yira, Y.; Bossa, A.Y.; Hounkpè, J.; Salack, S.; Saley, I.A.; Rabani, A. Modeling climate change impact on the hydropower potential of the Bamboi catchment. Model. Earth Syst. Environ. 2021, 7, 2709–2717. [Google Scholar]
- Rončák, P.; Šurda, P.; Vitková, J. The impact of climate change on the hydropower potential: A case study from topľa River Basin. Acta Hydrol. Slovaca 2021, 22, 22–29. [Google Scholar]
- Van Vliet, M.T.H.; van Beek, L.P.H.; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M.F.P. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Chang. 2016, 40, 156–170. [Google Scholar] [CrossRef]
- Ranzani, A.; Bonato, M.; Patro, E.R.; Gaudard, L.; De Michele, C. Hydropower Future: Between Climate Change, Renewable Deployment, Carbon and Fuel Prices. Water 2018, 10, 1197. [Google Scholar] [CrossRef] [Green Version]
- Olabiwonnu, F.O.; Bakken, T.H.; Anthony, B. Achieving sustainable low flow using hydropower reservoir for ecological water management in Glomma River Norway. Sustain. Water Resour. Manag. 2022, 8, 53. [Google Scholar] [CrossRef]
- Nowak, B.; Ptak, M. Natural and anthropogenic conditions of water level fluctuations in lakes—Powidzkie Lake case study (Central-Western Poland). J. Water Land Dev. 2019, 40, 13–25. [Google Scholar] [CrossRef]
- Water Management Instruction. Jeziorsko Reservoir; Regional Water Management Board: Poznań, Poland, 2014. (In Polish) [Google Scholar]
- Mandal, S.; Arunkumar, R.; Breach, P.A.; Simonovic, S.P. Reservoir Operations under Changing Climate Conditions: Hydropower-Production Perspective. J. Water Resour. Plan. Manag. 2019, 145, 04019016. [Google Scholar] [CrossRef]
- Shu, J.; Qu, J.J.; Motha, R.; Xu, J.C.; Dong, D.F. Impacts of climate change on hydropower development and sustainability: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 163, 012126. [Google Scholar] [CrossRef]
- Nakayama, P.K.T.; Mustafá, A.L. Hydropower plants and the climate change: Impacts and actions. CIGRE 2016, 46, 135990. [Google Scholar]
- Adynkiewicz-Piragas, M.; Miszuk, B. Risk Analysis Related to Impact of Climate Change on Water Resources and Hydropower Production in the Lusatian Neisse River Basin. Sustainability 2020, 12, 5060. [Google Scholar] [CrossRef]
Date/Damming m a.s.l. | ||||
---|---|---|---|---|
22 October 1992 | 23 December 1998 | 29 October 2008 | 29 August 2014 | |
Filling | 1 February–15 April From 116.3 to 121.5 | 1 February–15 April From 116.3 to 120.5 | 1 February–15 April From 116.3 to 120.5 | 1 February–15 April From 116.3 to 120.0 |
Maintenance of the obtained damming level | 16 April–30 June 121.5 | 16 April–30 June 120.5 | 16 April–30 June 120.5 | 16 April–15 September 120.0 |
Adjustment of the water level | 1 July–30 November 121.5–116.3 | 1 July–30 November 120.5–116.3 | 1 July–31 December 116.3–120.5 | 16 September–31 December 116.3–120.0 m |
Maintenance of the obtained damming level | 1 December–31 January 116.0–116.3 | 1 December–31 January 116.0–116.3 | 1 January–31 January 116.0–116.3 | 1 January–31 January 116.0–116.3 |
Period | S | Z-Value | Sen’s Slope (MWh) | p-Value |
---|---|---|---|---|
January | −29 | −0.62 | −3.5 | 0.537 |
February | −29 | −0.62 | −8.4 | 0.537 |
March | −75 | −1.63 | −27.9 | 0.103 |
April | −143 | −3.13 | −43.4 | 0.002 ** |
May | −93 | −2.03 | −24.5 | 0.043 * |
June | −117 | −2.56 | −28.7 | 0.011 * |
July | −181 | −3.97 | −55.1 | 0.000 ** |
August | −141 | −3.09 | −47.0 | 0.002 ** |
September | −55 | −1.19 | −20.7 | 0.234 |
October | −43 | −0.93 | −9.0 | 0.355 |
November | −31 | −0.66 | −10.4 | 0.508 |
December | −41 | −0.88 | −8.6 | 0.378 |
Year | −151 | −3.31 | −303.8 | 0.001 ** |
Period | S | Z-Value | Sen’s Slope (m) | p-Value |
---|---|---|---|---|
January | −87 | −1.90 | −0.019 | 0.058 |
February | −55 | −1.19 | −0.033 | 0.234 |
March | −105 | −2.29 | −0.067 | 0.022 * |
April | −177 | −3.88 | −0.045 | 0.000 ** |
May | −168 | −3.68 | −0.037 | 0.000 ** |
June | −165 | −3.61 | −0.037 | 0.000 ** |
July | −122 | −2.67 | −0.043 | 0.008 ** |
August | −41 | −0.88 | −0.022 | 0.378 |
September | 19 | 0.40 | 0.012 | 0.692 |
October | −1 | 0.00 | −0.002 | 1.000 |
November | −35 | −0.75 | −0.021 | 0.454 |
December | −47 | −1.01 | −0.015 | 0.311 |
Year | −129 | −2.82 | −0.034 | 0.005 ** |
Period | S | Z-Value | Sen’s Slope (m3s−1) | p-Value |
---|---|---|---|---|
January | −11 | −0.22 | −0.072 | 0.826 |
February | −41 | −0.88 | −0.377 | 0.378 |
March | −87 | −1.90 | −0.681 | 0.058 |
April | −121 | −2.64 | −1.122 | 0.008 ** |
May | −85 | −1.85 | −0.632 | 0.064 |
June | −95 | −2.07 | −0.502 | 0.038 * |
July | −193 | −4.23 | −1.090 | 0.000 ** |
August | −169 | −3.70 | −1.201 | 0.000 ** |
September | −115 | −2.51 | −0.927 | 0.012 * |
October | −99 | −2.16 | −0.587 | 0.031 * |
November | −77 | −1.68 | −0.553 | 0.094 |
December | −81 | −1.76 | −0.575 | 0.078 |
Year | −173 | −3.79 | −0.761 | 0.000 ** |
Sieradz | Uniejów | |||||||
---|---|---|---|---|---|---|---|---|
Period | S | Z-Value | Sen’s Slope (m3s−1) | p-Value | S | Z-Value | Sen’s Slope (m3s−1) | p-Value |
January | −55 | −1.19 | −0.495 | 0.234 | −25 | −0.53 | −0.338 | 0.597 |
February | −65 | −1.41 | −0.902 | 0.158 | −75 | −1.63 | −0.945 | 0.103 |
March | −163 | −3.57 | −1.742 | 0.000 ** | −107 | −2.34 | −1.490 | 0.019 * |
April | −173 | −3.79 | −1.102 | 0.000 ** | −149 | −3.26 | −1.710 | 0.001 ** |
May | −89 | −1.94 | −0.734 | 0.052 | −83 | −1.81 | −0.840 | 0.071 |
June | −145 | −3.17 | −0.586 | 0.002 ** | −129 | −2.82 | −0.675 | 0.005 ** |
July | −147 | −3.22 | −1.059 | 0.001 ** | −201 | −4.41 | −1.459 | 0.000 ** |
August | −133 | −2.91 | −0.717 | 0.004 ** | −191 | −4.19 | −1.391 | 0.000 ** |
September | −115 | −2.51 | −0.655 | 0.012 * | −119 | −2.60 | −0.839 | 0.009 ** |
October | −121 | −2.64 | −0.692 | 0.008 ** | −83 | −1.81 | −0.632 | 0.071 |
November | −129 | −2.82 | −0.947 | 0.005 ** | −93 | −2.03 | −0.748 | 0.043 * |
December | −105 | −2.29 | −0.631 | 0.022 * | −81 | −1.76 | −0.719 | 0.078 |
Year | −179 | −3.92 | −1.106 | 0.000 ** | −175 | −3.84 | −1.289 | 0.000 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, B.; Andrzejak, A.; Filipiak, G.; Ptak, M.; Sojka, M. Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant. Energies 2022, 15, 7695. https://doi.org/10.3390/en15207695
Nowak B, Andrzejak A, Filipiak G, Ptak M, Sojka M. Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant. Energies. 2022; 15(20):7695. https://doi.org/10.3390/en15207695
Chicago/Turabian StyleNowak, Bogumił, Anna Andrzejak, Grzegorz Filipiak, Mariusz Ptak, and Mariusz Sojka. 2022. "Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant" Energies 15, no. 20: 7695. https://doi.org/10.3390/en15207695
APA StyleNowak, B., Andrzejak, A., Filipiak, G., Ptak, M., & Sojka, M. (2022). Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant. Energies, 15(20), 7695. https://doi.org/10.3390/en15207695