Efficient CsPbBr3 Perovskite Solar Cells with Storage Stability > 340 Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Precursor Solutions Preparation
2.2. Multi-Step Spin-Coating Process of CsPbBr3 Films
2.3. Device Fabrication
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Guo, Y.; Wang, X.; Tao, J.; Li, Z.; Zheng, D.; Jiang, J.; Hu, Z.; Chu, J. Efficient carbon-based planar CsPbBr3 perovskite solar cells with Li-doped amorphous Nb2O5 layer. J. Alloy. Compd. 2020, 842, 1559840. [Google Scholar] [CrossRef]
- Xu, W.; Gao, Y.; Ming, W.; He, F.; Li, J.; Zhu, X.; Kang, F.; Li, J.; Wei, G. Suppressing Defects-Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Adv. Mater. 2020, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, T.; Kulkarni, A.; Kim, G.M.; Öz, S.; Jena, A. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free? Adv. Energy Mater. 2019, 10, 1–20. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Yao, W.; Yang, C.; Zhang, H.; Zhang, J.; Zhu, Y. Heterogeneous photoresponse of individual grain in all-inorganic perovskite solar cells. Appl. Phys. Lett. 2020, 117, 083902–083906. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiency Chart. 2022. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 25 September 2022).
- Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14%-Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open-Circuit Voltage of 1.594 V. Adv. Energy Mater. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, N.; Arain, Z.; Mateen, M.; Chen, J.; Sun, Y.; Li, Z. Polymer-induced lattice expansion leads to all-inorganic CsPbBr3 perovskite solar cells with reduced trap density. J. Power Sources 2020, 475, 228676. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Tan, X.; Ye, H.; Sun, B.; Xi, S.; Shi, T.; Tang, Z.; Liao, G. Novel antisolvent-washing strategy for highly efficient carbon-based planar CsPbBr3 perovskite solar cells. J. Power Sources 2019, 439, 227092. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, L.; Xiang, S.; Wei, Y.; Xie, M.; Liu, H.; Li, W.; Chen, H. Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: A promising light absorber in carbon-based perovskite solar cells. Sustain. Energy Fuels 2019, 3, 184–194. [Google Scholar] [CrossRef]
- Xu, H.; Duan, J.; Zhao, Y.; Jiao, Z.; He, B.; Tang, Q. 9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3-xIx quantum dots promote charge extraction. J. Power Sources 2018, 399, 76–82. [Google Scholar] [CrossRef]
- Tong, G.; Chen, T.; Li, H.; Qiu, L.; Liu, Z.; Dang, Y.; Song, W.; Ono, L.K.; Jiang, Y.; Qi, Y. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy 2019, 65, 104015. [Google Scholar] [CrossRef]
- Yuan, H.; Zhao, Y.; Duan, J.; Wang, Y.; Yang, X.; Tang, Q. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 2018, 6, 24324–24329. [Google Scholar] [CrossRef]
- Duan, J.; Zhao, Y.; He, B.; Tang, Q. High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angew. Chem. 2018, 130, 3849–3853. [Google Scholar] [CrossRef]
- Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Tang, M.; He, B.; Shen, K.; Zhang, W.; Sun, X.; Sun, M.; Chen, H.; Duan, Y.; Tang, Q. Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovskite solar cells by interface engineering with ultraviolet absorber. Chem. Eng. J. 2020, 404, 126548. [Google Scholar] [CrossRef]
- Jiang, J.; Jin, Z.; Gao, F.; Sun, J.; Wang, Q.; Liu, S. CsPbCl3-Driven Low-Trap-Density Perovskite Grain Growth for >20% Solar Cell Efficiency. Adv. Sci. 2018, 5, 1800474. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.; Snaith, H. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Liu, M.; Dahlström, S.; Ahläng, C.; Wilken, S.; Degterev, A.; Matuhina, A.; Hadadian, M.; Markkanen, M.; Aitola, K.; Kamppinen, A.; et al. Beyond hydrophobicity: How F4-TCNQ doping of the hole transport material improves stability of mesoporous triple-cation perovskite solar cells. J. Mater. Chem. A 2022, 10, 11721–11731. [Google Scholar] [CrossRef]
- Saliba, M.; Stolterfoht, M.; Wolff, C.M.; Neher, D.; Abate, A. Measuring Aging Stability of Perovskite Solar Cells. Joule 2018, 2, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Duan, J.; Yang, X.; Duan, Y.; Tang, Q. Interfacial Strain Release from the WS 2 /CsPbBr 3 van der Waals Heterostructure for 1.7 V Voltage All-Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. 2020, 59, 21997–22001. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Z.; Chueh, C.-C.; Liu, H.; Peng, B.; Petrone, A.; Li, X.; Wang, L.; Jen, A.K.-Y. Mixed Cation FAxPEA1-xPbI3with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Zhang, F.; Kim, D.H.; Lu, H.; Park, J.-S.; Larson, B.W.; Hu, J.; Gao, L.; Xiao, C.; Reid, O.G.; Chen, X.; et al. Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. J. Am. Chem. Soc. 2019, 141, 5972–5979. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photon- 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Wu, J.; Dong, J.-J.; Chen, S.-X.; Hao, H.-Y.; Xing, J.; Liu, H. Fabrication of Efficient Organic-Inorganic Perovskite Solar Cells in Ambient Air. Nanoscale Res. Lett. 2018, 13, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Hou, S.; Li, X.; Dong, J.; Zou, L.; Yang, M.; Xing, J.; Liu, H.; Hao, H. Preparation of highly efficient and stable CsPbBr3 perovskite solar cells based on an anti-solvent rinsing strategy. Sol. Energy Mater. Sol. Cells 2022, 234, 111420–111428. [Google Scholar] [CrossRef]
- Fu, W.; Liu, H.; Shi, X.; Zuo, L.; Li, X.; Jen, A.K. Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasi-2D Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Yun, Y.; Wang, F.; Huang, H.; Fang, Y.; Liu, S.; Huang, W.; Cheng, Z.; Liu, Y.; Cao, Y.; Gao, M.; et al. A Nontoxic Bifunctional (Anti)Solvent as Digestive-Ripening Agent for High-Performance Perovskite Solar Cells. Adv. Mater. 2020, 32, e1907123. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, J.; Yu, H.; Lee, J.W.; Yoon, C.-M.; Kim, S.K.; Jang, J. A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite. J. Mater. Chem. A 2018, 6, 24560–24568. [Google Scholar] [CrossRef]
- Canil, L.; Salunke, J.; Wang, Q.; Liu, M.; Köbler, H.; Flatken, M.; Gregori, L.; Meggiolaro, D.; Ricciarelli, D.; De Angelis, F.; et al. Halogen-Bonded Hole-Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2101553. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Wu, S.; Li, X.; Yan, J.; Xing, J.; Liu, H.; Hao, H.; Dong, J.; Huang, H. Efficient CsPbBr3 Perovskite Solar Cells with Storage Stability > 340 Days. Energies 2022, 15, 7740. https://doi.org/10.3390/en15207740
Hou S, Wu S, Li X, Yan J, Xing J, Liu H, Hao H, Dong J, Huang H. Efficient CsPbBr3 Perovskite Solar Cells with Storage Stability > 340 Days. Energies. 2022; 15(20):7740. https://doi.org/10.3390/en15207740
Chicago/Turabian StyleHou, Shaochuan, Siheng Wu, Xiaoyan Li, Jiahao Yan, Jie Xing, Hao Liu, Huiying Hao, Jingjing Dong, and Haochong Huang. 2022. "Efficient CsPbBr3 Perovskite Solar Cells with Storage Stability > 340 Days" Energies 15, no. 20: 7740. https://doi.org/10.3390/en15207740
APA StyleHou, S., Wu, S., Li, X., Yan, J., Xing, J., Liu, H., Hao, H., Dong, J., & Huang, H. (2022). Efficient CsPbBr3 Perovskite Solar Cells with Storage Stability > 340 Days. Energies, 15(20), 7740. https://doi.org/10.3390/en15207740