Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications
Abstract
:1. Introduction
2. Supercapacitor Types
3. Supercapacitor Equivalent Circuit Models
4. Limitations and Future Trends of Supercapacitor
5. Supercapacitor Applications
5.1. Electrical Vehicle Applications
5.1.1. SC and Battery Pack Integrated EV Systems
5.1.2. Regenerative Breaking
5.1.3. Start and Stop Systems
5.2. Microgrid Applications
5.3. Portable Applications
6. Conclusions
Funding
Conflicts of Interest
References
- Viswanathan, A.; Shetty, A.N. The high energy supercapacitor from rGO/Ni(OH)2/PANI nanocomposite with methane sulfonic acid as dopant. J. Colloid Interface Sci. 2019, 557, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhao, B.; Zhang, W.; Shi, F.; Zheng, G.; Zhang, D.; Yang, J. High-Performance Supercapacitor Applications of NiO-Nanoparticle-Decorated Millimeter-Long Vertically Aligned Carbon Nanotube Arrays via an Effective Supercritical CO2-Assisted Method. Adv. Funct. Mater. 2015, 25, 7381–7391. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, B.; Cheng, J.; Li, J.; Zhang, H.; Tang, Z.; Yang, J. Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim. Acta 2015, 173, 399–407. [Google Scholar] [CrossRef]
- Lamedica, R.; Ruvio, A.; Tobia, M.; Buffarini, G.G.; Carones, N. A Preliminary Techno-Economic Comparison between DC Electrification and Trains with On-Board Energy Storage Systems. Energies 2020, 13, 6702. [Google Scholar] [CrossRef]
- Kularatna, N.; Subasinghage, K.; Gunawardane, K.; Jayananda, D.; Ariyarathna, T. Supercapacitor-Assisted Techniques and Supercapacitor-Assisted Loss Management Concept: New Design Approaches to Change the Roadmap of Power Conversion Systems. Electronics 2021, 10, 1697. [Google Scholar] [CrossRef]
- Automotive & Passenger Car Applications—Supercapacitors | Skeleton. Available online: http://www.skeletontech.com/automotive-applications (accessed on 1 October 2022).
- Large-Scale, Available Graphene Supercapacitors; How Close Are We? Available online: https://www.azonano.com/article.aspx?ArticleID=6053 (accessed on 1 October 2022).
- Lemian, D.; Bode, F. Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review. Energies 2022, 15, 5683. [Google Scholar] [CrossRef]
- Houache, M.S.E.; Yim, C.-H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Gunawardane, K.; Bandara, N.; Subasinghage, K.; Kularatna, N. Extending the Input Voltage Range of Solar PV Inverters with Supercapacitor Energy Circulation. Electronics 2021, 10, 88. [Google Scholar] [CrossRef]
- Zhou, Z. Modeling and Power Control of a Marine Current Turbine System with Energy Storage Devices; Universit’e de Bretagne, Occidentale: Brest, France, 2014. [Google Scholar]
- Roth, W.D. Super and Ultracapacitors Thousands of Farads Thanks to Double Layer Technology; EETech Media: Boise, ID, USA, 2019. [Google Scholar]
- Kularatna, N.; Gunawardane, K. Energy Storage Devices for Renewable Energy-Based Systems; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Eaton’s HS Hybrid Supercapacitors Combine Proprietary Materials to Achieve Greater Energy Density and Cycle Lifetimes; EATON Electronics Division: Cleveland, OH, USA, 2021.
- Schweber, B. Use Hybrids To Bring the Benefits of Both Batteries and Supercapacitors to Power IoT Designs. Available online: https://www.digikey.com/en/articles/use-hybrids-to-bring-the-benefits-of-both-batteries-and-supercapacitors-to-power-iot-designs (accessed on 17 August 2022).
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Liu, X.; Zhu, Y.; Wu, Y.; van Ree, T. 7—Metal oxides in supercapacitors. In Metal Oxides in Energy Technologies; Wu, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–203. [Google Scholar] [CrossRef]
- Samwha Capacitor Group. Available online: http://www.samwha.com/ (accessed on 12 September 2022).
- Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868–1878. [Google Scholar] [CrossRef]
- Corti, F.; Gulino, M.-S.; Laschi, M.; Lozito, G.M.; Pugi, L.; Reatti, A.; Vangi, D. Time-Domain Circuit Modelling for Hybrid Supercapacitors. Energies 2021, 14, 6837. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, W.; Lee, K.B.; Choi, S. Advanced Dynamic Simulation of Supercapacitors Considering Parameter Variation and Self-Discharge. IEEE Trans. Power Electron. 2011, 26, 3377–3385. [Google Scholar]
- Spyker, R.L.; Nelms, R.M. Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 829–836. [Google Scholar] [CrossRef]
- Zubieta, L.; Bonert, R. Characterization of double-layer capacitors for power electronics applications. IEEE Trans. Ind. Appl. 2000, 36, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Rajani, S.V.; Pandya, V.J.; Shah, V.A. Experimental validation of the ultracapacitor parameters using the method of averaging for photovoltaic applications. J. Energy Storage 2016, 5, 120–126. [Google Scholar] [CrossRef]
- Musolino, V.; Piegari, L.; Tironi, E. New Full-Frequency-Range Supercapacitor Model With Easy Identification Procedure. IEEE Trans. Ind. Electron. 2013, 60, 112–120. [Google Scholar] [CrossRef]
- Torregrossa, D.; Bahramipanah, M.; Namor, E.; Cherkaoui, R.; Paolone, M. Improvement of Dynamic Modeling of Supercapacitor by Residual Charge Effect Estimation. IEEE Trans. Ind. Electron. 2014, 61, 1345–1354. [Google Scholar] [CrossRef]
- Kularatna, N. Supercapacitors Improve the Performance of Linear Power-Management Circuits: Unique new design options when capacitance jump from micro-farads to farads with a low equivalent series resistance. IEEE Power Electron. Mag. 2016, 3, 45–59. [Google Scholar] [CrossRef]
- Zhang, L.; Song, J.Y.; Zou, J.Y.; Wang, N. High Voltage Super-Capacitors for Energy Storage Devices Applications. In Proceedings of the 2008 14th Symposium on Electromagnetic Launch Technology, Victoria, BC, Canada, 10–13 June 2008; pp. 1–4. [Google Scholar]
- Blain, L. Researchers Achieve a 10x Supercapacitor Energy Density Breakthrough. Available online: https://newatlas.com/energy/supercapacitor-density-breakthrough/ (accessed on 1 October 2022).
- Li, Z.; Gong, L. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion. Materials 2020, 13, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, W.L.; Lai, C.H.; Wong, W.S.H.; Wong, M.L.D. Cost analysis of battery-supercapacitor hybrid energy storage system for standalone PV systems. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14–15 November 2016; pp. 1–6. [Google Scholar]
- Kuperman, A.; Aharon, I.; Malki, S.; Kara, A. Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source. IEEE Trans. Power Electron. 2013, 28, 806–815. [Google Scholar] [CrossRef]
- Lijun, G.; Dougal, R.A.; Shengyi, L. Power enhancement of an actively controlled battery/ultracapacitor hybrid. IEEE Trans. Power Electron. 2005, 20, 236–243. [Google Scholar]
- Girard, H.-L.; Wang, H.; d’Entremont, A.L.; Pilon, L. Enhancing Faradaic Charge Storage Contribution in Hybrid Pseudocapacitors. Electrochim. Acta 2015, 182, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy Storage Systems for Automotive Applications. IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [Google Scholar] [CrossRef]
- Kuperman, A.; Aharon, I. Battery–ultracapacitor hybrids for pulsed current loads: A review. Renew. Sustain. Energy Rev. 2011, 15, 981–992. [Google Scholar] [CrossRef]
- Chia-Hao, T.; Emadi, A. A novel series-parallel reconfigurable hybrid energy storage system for electrified vehicles. In Proceedings of the 2012 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 18–20 June 2012; pp. 1–4. [Google Scholar]
- Chau, K.T. 21—Pure electric vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance; Folkson, R., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 655–684. [Google Scholar] [CrossRef]
- Pan, C.; Wang, J.; Dai, W.; Chen, L.; Chen, L. Constant current control for regenerative braking of passive series hybrid power system. Int. Trans. Electr. Energy Syst. 2020, 30, e12577. [Google Scholar] [CrossRef]
- Horn, M.; MacLeod, J.; Liu, M.; Webb, J.; Motta, N. Supercapacitors: A new source of power for electric cars? Econ. Anal. Policy 2019, 61, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Niu, J.; Li, H.; Atiquzzaman, M. A Secure and Efficient Location-based Service Scheme for Smart Transportation. Future Gener. Comput. Syst. 2019, 92, 694–704. [Google Scholar] [CrossRef]
- Parvini, Y.; Vahidi, A. Optimal charging of ultracapacitors during regenerative braking. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–6. [Google Scholar]
- Perrotta, D.; Ribeiro, B.; Rossetti, R.J.F.; Afonso, J.L. On the Potential of Regenerative Braking of Electric Buses as a Function of Their Itinerary. Procedia Soc. Behav. Sci. 2012, 54, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.-q.; Zheng, Y.; Li, J.-h.; Liu, Y.-l. A study of novel regenerative braking system based on supercapacitor for electric vehicle driven by in-wheel motors. Adv. Mech. Eng. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Liu, M.; Xu, L.; Lu, W. Bi-level programming approach for coordinated configuration of distributed generations and automation devices in distribution networks. Int. J. Electr. Power Energy Syst. 2021, 133, 107210. [Google Scholar] [CrossRef]
- Taranovich, S. General Motors Chooses Ultracapacitors for Start-Stop. Available online: https://www.edn.com/general-motors-chooses-ultracapacitors-for-start-stop/ (accessed on 20 August 2022).
- Werkstetter, S. Ultracapacitors for Start-Stop Systems in Micro-Hybrids. Available online: https://www.engineering.com/story/ultracapacitors-for-start-stop-systems-in-micro-hybrids (accessed on 20 August 2022).
- Skelstart Engine Start Module: A Powerful Module for Reliable Engine Starting for Large Diesel Engines under All Weather Conditions. Available online: https://www.skeletontech.com/skelstart-ultracapacitor-engine-start-module (accessed on 25 August 2022).
- Şahin, M.E.; Blaabjerg, F. A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/Simulink. Electronics 2020, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Glavin, M.E.; Chan, P.K.W.; Armstrong, S.; Hurley, W.G. A stand-alone photovoltaic supercapacitor battery hybrid energy storage system. In Proceedings of the 2008 13th International Power Electronics and Motion Control Conference, Poznan, Poland, 1–3 September 2008; pp. 1688–1695. [Google Scholar]
- Babu, T.S.; Vasudevan, K.R.; Ramachandaramurthy, V.K.; Sani, S.B.; Chemud, S.; Lajim, R.M. A Comprehensive Review of Hybrid Energy Storage Systems: Converter Topologies, Control Strategies and Future Prospects. IEEE Access 2020, 8, 148702–148721. [Google Scholar]
- Zheng, J.P.; Jow, T.R.; Ding, M.S. Hybrid power sources for pulsed current applications. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 288–292. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems. Appl. Energy 2015, 153, 56–62. [Google Scholar]
- Song, Z.; Hofmann, H.; Li, J.; Han, X.; Zhang, X.; Ouyang, M. A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles. J. Power Sources 2015, 274, 400–411. [Google Scholar]
- Cohen, I.J.; Wetz, D.A.; Heinzel, J.M.; Dong, Q. Design and Characterization of an Actively Controlled Hybrid Energy Storage Module for High-Rate Directed Energy Applications. IEEE Trans. Plasma Sci. 2015, 43, 1427–1433. [Google Scholar]
- Maxwell Ultracapacitors Providing Resilience to Island Microgrids. Available online: https://ease-storage.eu/news/netfficient-maxwell-ultracapacitors-providing-resiliency-to-island-microgrids/ (accessed on 1 October 2022).
- Hydrogen-Supercapacitor Rural Microgrid. Available online: https://www.enapter.com/application/hydrogen-supercapacitor-rural-microgrid (accessed on 1 October 2022).
- Using Supercapacitors to Solve LED Flash Power Issues for High Resolution Camera Phones. Available online: https://www.cap-xx.com/wp-content/uploads/2015/04/Using-Supercapacitors-to-Solve-LED-Flash-Power-Issues-for-High-Res-CamPhones.pdf (accessed on 2 October 2022).
- LM3550 5-A Super-Capacitor Flash LED Driver; Texas Instruments Incorporate: Dallas, TX, USA, 2009; Available online: https://www.ti.com/product/LM3550 (accessed on 12 September 2022).
Characteristics | Capacitors | Supercapacitors | Batteries |
---|---|---|---|
Power density (W/kg) | >106 | 60,000 | <3000 |
Energy density (Wh/kg) | <0.1 | 1 to 73 | 10 to 250 |
Equivalent series resistance | Typically, in mΩ range | Typically, in mΩ range | Fractional Ω to few Ω |
Cycle time | 106 | 50,000 to 1,100,000 | 500 to 18,000 |
Charge time (s) | 10−3 to 10−6 | 0.3 to 60 | 3600 to 18,000 |
Discharge time (s) | 10−3 to 10−6 | 0.1 to 1800 | 600 to 10,800 |
Typical lifetime (years) | 30 | 30 | 5–20 |
Operating temperature range (°C) | −40 to +125 | −40 to +70 | −20 to +65 |
Parameter | Electric Double Layer Capacitors | Hybrid Supercapacitor | Pseudocapacitor |
---|---|---|---|
Storage mechanism | Non-faradic/electrostatic, electrical charge stored at the metal/electrolyte interface | Both faradaic and non-faradic | Faradic, reversible redox reaction |
Maximum Specific Power (W/kg) | 10,000 | 5000 | 4000 |
Specific energy (Wh/kg) | 1–20 | 7–12 | 20–60 |
Life (number of cycles) | 50,000–1,000,000 | 40,000–50,000 | 15,000–20,000 |
Material | Carbon-based materials (e.g., activated carbon, carbon nanotubes) | Metal oxide/carbon-based materials, conducting polymer/carbon-based materials (e.g., Ni(OH)2/rGO, PANI/rGO) | Metal oxides, conducting polymers (e.g., NiO, MgO, PANI) |
Temperature range (°C) | –40 to 70 °C | –20 to 60 °C | –20 to 50 °C |
Application | Supercapacitor Stack Size | Voltage Level of the Stack | |
---|---|---|---|
Electric vehicles | Regenerative breaking (e.g., trolley bus system in Ningbo, China | 30,000 F | 1500 V |
Start-stop function (e.g., Skeleton Technologies, SkelStart Engine Start Module) | 1280 F | 12 V | |
Microgrids | Hybrid energy storage (HES) systems (e.g., Duke Energy HES system in North Carolina in the United States) | 1.2 MW | Not specified |
Portable products | Camera Flash systems | Typically, 0.4-to-1 F | 5.4 V |
Screwdrivers (e.g., Coleman ultracapacitor-driven screwdriver) | Not specified | 5.4 V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subasinghage, K.; Gunawardane, K.; Padmawansa, N.; Kularatna, N.; Moradian, M. Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications. Energies 2022, 15, 7752. https://doi.org/10.3390/en15207752
Subasinghage K, Gunawardane K, Padmawansa N, Kularatna N, Moradian M. Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications. Energies. 2022; 15(20):7752. https://doi.org/10.3390/en15207752
Chicago/Turabian StyleSubasinghage, Kasun, Kosala Gunawardane, Nisitha Padmawansa, Nihal Kularatna, and Mehdi Moradian. 2022. "Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications" Energies 15, no. 20: 7752. https://doi.org/10.3390/en15207752