Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
- x1
- primary energy consumption (the total energy needs of a country excluding all non-energy use of energy carriers) in tonnes of oil equivalent (TOE) per capita;
- x2
- final energy consumption (the energy end-use in a country excluding all non-energy use of energy carriers) in tonnes of oil equivalent (TOE) per capita;
- x3
- final energy consumption in households per capita (how much electricity and heat every citizen consumes at home excluding energy used for transportation) in kilograms of oil equivalent (KGOE) per capita;
- x4
- energy productivity (the amount of economic output that is produced per unit of gross available energy) in purchasing power standard (PPS) per kilogram of oil equivalent;
- x5
- share of renewable energy in gross final energy consumption (the share of renewable energy consumption in gross final energy consumption according to the Renewable Energy Directive) in percentage;
- x6
- energy import dependency (the share of total energy needs of a country met by imports from other countries) in percentage;
- x7
- population unable to keep home adequately warm (the share of population who are unable to keep home adequately warm) in percentage.
3.2. Methods
- We assess the degree of implementation of SDG7 using the COPRAS method;
- We present the rankings of countries with respect to the degree of implementation of SDG7 in the years 2005, 2009, and 2020 (the first and last years and the peak of the financial crisis of 2007–2009);
- We compare the dynamics of SDG7 implementation by means of the Dynamic Time Warping method;
- We apply the hierarchical clustering to obtain homogeneous groups of countries with respect to the dynamics of implementation of SDG7.
3.2.1. The COPRAS Method
3.2.2. The Dynamic Time Warping Method
3.2.3. Hierarchical Clustering
4. Results
4.1. Rankings of Countries with Respect to Degree of Implementation of SDG7
4.2. Assessment of Dynamics of Countries with Respect to the Degree of SDG7 Implementation
- general economic situation—GDP per capita in PPS in constant prices from 2020;
- situation in the labour market—unemployment rate;
- selected poverty indicator—in work at-risk-of-poverty rate.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timilsina, G.; Kalim, U.S. Energy Technologies for Sustainable Development Goal 7. In Science, Technology, and Innovation for Sustainable Development Goals: Insights from Agriculture, Health, Environment, and Energy; Adenle, A.A., Chertow, M.R., Moors, E.H.M., Pannell, D.J., Eds.; Oxford Academic: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Sobczak, A.; Soboń, D. The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects. Energies 2022, 15, 4142. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Tabash, M.I.; Billah, M.; Kumar, S.; Anagreh, S. The Impacts of the Russia–Ukraine Invasion on Global Markets and Commodities: A Dynamic Connectedness among G7 and BRIC Markets. J. Risk Financ. Manag. 2022, 15, 352. [Google Scholar] [CrossRef]
- Lecka, I.; Gudowski, J.; Wołowiec, T. CSR in Poland and the Implementation of Sustainable Development Goals in the Energy Sector during the COVID-19 Pandemic. Energies 2022, 15, 7057. [Google Scholar] [CrossRef]
- Li, D.; Bae, J.H.; Rishi, M. Sustainable Development and SDG-7 in Sub-Saharan Africa: Balancing Energy Access, Economic Growth, and Carbon Emissions. Eur. J. Dev. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Marcillo-Delgado, J.C.; Ortego, M.I.; Pérez-Foguet, A. A compositional approach for modelling SDG7 indicators: Case study applied to electricity access. Renew. Sustain. Energy Rev. 2019, 107, 388–398. [Google Scholar] [CrossRef]
- Bertheau, P.; Blechinger, P. Resilient solar energy island supply to support SDG7 on the Philippines: Techno-economic optimized electrification strategy for small islands. Util. Policy 2018, 54, 55–77. [Google Scholar] [CrossRef]
- Martins, F.F.; Felgueiras, C.; Caetano, N.S. Macro modeling of electricity price towards SDG7. Energy Rep. 2022, 8, 614–622. [Google Scholar] [CrossRef]
- Lund, H. Chapter 1—Introduction. In Renewable Energy Systems, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–14. [Google Scholar] [CrossRef]
- Kutscher, C.F.; Milford, J.B.; Kreith, F. Principles of Sustainable Energy Systems. Mechanical and Aerospace Engineering Series, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Jain, P.; Jain, P. Are the Sustainable Development Goals really sustainable? A policy perspective. Sustain. Dev. 2020, 28, 1642–1651. [Google Scholar] [CrossRef]
- Dalei, N.N.; Painuly, P.K.; Rawat, A.; Heggde, G.S. Sustainable Energy Challenges in Realizing SDG 7. In Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tucho, G.T.; Kumsa, D.M. Challenges of Achieving Sustainable Development Goal 7 From the Perspectives of Access to Modern Cooking Energy in Developing Countries. Front. Energy Res. 2020, 8, 564104. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-7 Affordable and Clean Energy. In Emerging Technologies; Springer: Cham, Switzerland, 2022; pp. 305–330. [Google Scholar] [CrossRef]
- Pakkan, S.; Sudhakar, C.; Tripathi, S.; Rao, M. A correlation study of sustainable development goal (SDG) interactions. Qual. Quant. 2022. [Google Scholar] [CrossRef] [PubMed]
- Coenen, J.; Glass, L.M.; Sanderink, L. Two degrees and the SDGs: A network analysis of the interlinkages between transnational climate actions and the Sustainable Development Goals. Sustain. Sci. 2022, 17, 1489–1510. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Pugazhendhi, R.; Shafiullah, G.M.; Nallapaneni Manoj Kumar, N.M.; Arif, M.T.; Jamal, T.; Chopra, S.S.; Dyduch, J. Impacts of COVID-19 on Sustainable Development Goals and effective approaches to maneuver them in the post-pandemic environment. Environ. Sci. Pollut. Res. 2022, 29, 33957–33987. [Google Scholar] [CrossRef] [PubMed]
- Villavicencio Calzadilla, P.; Mauger, R. The UN’s new sustainable development agenda and renewable energy: The challenge to reach SDG7 while achieving energy justice. J. Energy Nat. Resour. Law 2018, 36, 233–254. [Google Scholar] [CrossRef]
- Yu, M.; Kubiczek, J.; Ding, K.; Agha Jahanzeb, A.; Iqbal, N. Revisiting SDG-7 under energy efficiency vision 2050: The role of new economic models and mass digitalization in OECD. Energy Effic. 2022, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, M.; Gürler, C. Sustainable Development Goals: A cluster analysis of worldwide countries. Environ. Dev. Sustain. 2022, 24, 8593–8624. [Google Scholar] [CrossRef]
- Touitou, M. The Relationship Between Economic Growth, Energy Consumption and CO2 Emission in the Middle East and North Africa (MENA). Folia Oeconomica Stetin. 2021, 21, 132–147. [Google Scholar] [CrossRef]
- SE4All. Available online: http://www.se4all.org (accessed on 23 August 2022).
- Global Alliance for Clean Cookstoves. Available online: http://cleancookstoves.org (accessed on 23 August 2022).
- United Nations Environment Program. Available online: http://www.ccacoalition.org (accessed on 23 August 2022).
- Fulzele, R.; Fulzele, V.; Dharwal, M. Mapping the impact of COVID-19 crisis on the progress of Sustainable Development Goals (SDGs)—A focus on global environment and energy efficiencies. Mater. Today Proc. 2022, 60, 673–879. [Google Scholar] [CrossRef]
- Igliński, B.; Krukowski, K.; Mioduszewski, J.; Pietrzak, M.B.; Skrzatek, M.; Piechota, G.; Wilczewski, S. Assessment of the Current Potential of Hydropower for Water Damming in Poland in the Context of Energy Transformation. Energies 2022, 15, 922. [Google Scholar] [CrossRef]
- Graabak, I.; Korpås, M. Variability Characteristics of European Wind and Solar Power Resources—A Review. Energies 2016, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Alkesaiberi, A.; Harrou, F.; Sun, Y. Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study. Energies 2022, 15, 2327. [Google Scholar] [CrossRef]
- Kurowska, K.; Kryszk, H.; Bielski, S. Location and Technical Requirements for Photovoltaic Power Stations in Poland. Energies 2022, 15, 2701. [Google Scholar] [CrossRef]
- Ochieng, R.; Gebremedhin, A.; Sarker, S. Integration of Waste to Bioenergy Conversion Systems: A Critical Review. Energies 2022, 15, 2697. [Google Scholar] [CrossRef]
- Greco, A.; Gundabattini, E.; Solomon, D.G.; Singh Rassiah, R.; Masselli, C. A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning. Energies 2022, 15, 5519. [Google Scholar] [CrossRef]
- Barich, A.; Stokłosa, A.W.; Hildebrand, J.; Elíasson, O.; Medgyes, T.; Quinonez, G.; Casillas, A.C.; Fernandez, I. Social License to Operate in Geothermal Energy. Energies 2022, 15, 139. [Google Scholar] [CrossRef]
- Kukuła, K. Dynamics of Producing Renewable Energy in Poland and EU-28 Countries within the Period of 2004–2012. Folia Oeconomica Stetin. 2016, 15, 167–176. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Kuc-Czarnecka, M. Transformation of Energy Markets: Description, Modeling of Functioning Mechanisms and Determining Development Trends. Energies 2022, 15, 5493. [Google Scholar] [CrossRef]
- Igliński, B.; Pietrzak, M.B. Renewable and Sustainable Energy: Current State and Prospects. Energies 2022, 15, 4735. [Google Scholar] [CrossRef]
- Matenga, Z. Assessment of energy market’s progress towards achieving Sustainable Development Goal 7: A clustering approach. Sustain. Energy Technol. Assess. 2022, 52, 102224. [Google Scholar] [CrossRef]
- Sousa, M.; Almeida, M.F.; Calili, R. Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda. Sustainability 2021, 13, 4129. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Karabulut, Y.; Mukul, E. A novel renewable energy selection model for United Nations’ Sustainable Development Goals. Energy 2018, 165, 290–302. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, R.K.; Ryan, M.J. Evaluation of sustainable hydrogen production options using an advanced hybrid MCDM Approach: A case study. Int. J. Hydrogen Energy 2020, 46, 4567–4591. [Google Scholar] [CrossRef]
- Said, R.; Daud, M.N.; Esha, Z.; Majid, R.A.; Najib, M. Owners’ perception towards sustainable housing affordability in Kuching, Sarawak. J. Des. Built Environ. 2017, 17, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Tamošaitien, J. Selection of the effective dwelling house walls by applying attributes values determined at intervals. J. Civ. Eng. Manag. 2008, 14, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Deepa, N.; Ganesan, K.; Srinivasan, K.; Chang, C.-Y. Realizing Sustainable Development via Modified Integrated Weighting MCDM Model for Ranking Agrarian Dataset. Sustainability 2019, 11, 6060. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Goal 7. Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. 2022. Available online: https://sdgs.un.org/goals/goal7 (accessed on 16 August 2022).
- Zavadskas, E.K.; Kaklauskas, A.; Šarka, V. The new method of multictiteria complex proportional assessment projects. In Technological and Economic Development of Economy. Volume 3. Business Management; Zavadskas, E.K., Linnert, P., Eds.; Technika: Vilnius, Lithuania, 1994; pp. 131–140. [Google Scholar]
- Bellman, R.; Kalaba, R. On adaptive control processes. IRE Trans. Automat. Control 1959, 4, 1–9. [Google Scholar] [CrossRef]
- Rabiner, L.; Rosenberg, A.; Levinson, S. Considerations in dynamic time warping algorithms for discrete word recognition. IEEE Trans. Acoust. Speech Signal Process. 1978, 26, 575–582. [Google Scholar] [CrossRef]
- Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 1978, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.S.; Rabiner, L.R. A comparative study of several dynamic time-warping algorithms for connected word recognition. Bell Syst. Tech. J. 1981, 60, 1389–1409. [Google Scholar] [CrossRef]
- Sankoff, D.; Kruskal, J. (Eds.) Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison; Addison-Wesley: Reading, MA, USA, 1983. [Google Scholar]
- Stübinger, J. Statistical arbitrage with optimal causal paths on high-frequency data of the S&P 500. Quant. Financ. 2019, 19, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Dmytrów, K.; Bieszk-Stolorz, B. Mutual relationships between the unemployment rate and the unemployment duration in the Visegrad Group countries in years 2001–2017. Equilib. Q. J. Econ. Econ. Policy 2019, 14, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Dmytrów, K.; Bieszk-Stolorz, B. Comparison of changes in the labour markets of post-communist countries with other EU member states. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 741–764. [Google Scholar] [CrossRef]
- Bieszk-Stolorz, B.; Dmytrów, K. Assessment of the Similarity of the Situation in the EU Labour Markets and Their Changes in the Face of the COVID-19 Pandemic. Sustainability 2022, 14, 3646. [Google Scholar] [CrossRef]
- Dmytrów, K.; Landmesser, J.; Bieszk-Stolorz, B. The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method. Energies 2021, 14, 4024. [Google Scholar] [CrossRef]
- Landmesser, J. The use of the dynamic time warping (DTW) method to describe the COVID-19 dynamics in Poland. Oecon. Copernic. 2021, 12, 539–556. [Google Scholar] [CrossRef]
- Landmesser, J. Analysis of COVID-19 Dynamics in EU Countries Using the Dynamic Time Warping Method and ARIMA Models. In Data Analysis and Classification. SKAD 2020. Studies in Classification, Data Analysis, and Knowledge Organization; Jajuga, K., Najman, K., Walesiak, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 337–352. [Google Scholar] [CrossRef]
- Denkowska, A.; Wanat, S. Dynamic Time Warping Algorithm in Modeling Systemic Risk in the European Insurance Sector. Entropy 2021, 23, 1022. [Google Scholar] [CrossRef]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Stübinger, J.; Schneider, L. Epidemiology of coronavirus COVID-19: Forecasting the future incidence in different countries. Healthc. 2020, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Walesiak, M.; Dudek, A. The Choice of Variable Normalization Method in Cluster Analysis. In Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development During Global Challenges; Soliman, K.S., Ed.; International Business Information Management Association: Seville, Spain, 2020; pp. 325–340. [Google Scholar]
- Giorgino, T. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Softw. 2009, 37, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 2 August 2022).
- Lafortune, G.; Fuller, G.; Schmidt-Traub, G.; Kroll, C. How Is Progress towards the Sustainable Development Goals Measured? Comparing Four Approaches for the EU. Sustainability 2020, 12, 7675. [Google Scholar] [CrossRef]
- OECD. Measuring Distance to the SDG Targets 2019: An Assessment of Where OECD Countries Stand. 2019. Available online: https://www.oecd.org/sdd/measuring-distance-to-the-sdg-targets-2019-a8caf3fa-en.htm (accessed on 16 August 2022).
- SDSN & IEEP. 2019 Europe Sustainable Development Report. 2019. Available online: https://www.sdgindex.org/eports/2019-europe-sustainable-development-report/ (accessed on 16 August 2022).
- Clemente-Suárez, V.J.; Rodriguez-Besteiro, S.; Cabello-Eras, J.J.; Bustamante-Sanchez, A.; Navarro-Jiménez, E.; Donoso-Gonzalez, M.; Beltrán-Velasco, A.I.; Tornero-Aguilera, J.F. Sustainable Development Goals in the COVID-19 Pandemic: A Narrative Review. Sustainability 2022, 14, 7726. [Google Scholar] [CrossRef]
- Siddique, A.; Shahzad, A.; Lawler, J.; Mahmoud, K.; Lee, D.; Ali, N.; Bilal, M.; Rasoola, K. Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. Environ. Res. 2021, 110, 110443–110455. [Google Scholar] [CrossRef] [PubMed]
- Deif, M.A.; Solyman, A.A.; Alsharif, M.H.; Jung, S.; Hwang, E. A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing Numerical Weather Prediction: A Study for the Seoul Metropolitan Area. Sustainability 2022, 14, 296. [Google Scholar] [CrossRef]
- Bissio, R. SDG Indicators and BS/Index: The Power of Numbers in the Sustainable Development Debate. Development 2019, 62, 81–85. [Google Scholar] [CrossRef]
- Firoiu, D.; Ionescu, G.H.; Pîrvu, R.; Cismaș, L.M.; Tudor, S.; Patrichi, I.C. Dynamics of Implementation of SDG 7 Targets in EU Member States 5 Years after the Adoption of the Paris Agreement. Sustainability 2021, 13, 8284. [Google Scholar] [CrossRef]
- Cheba, K.; Bąk, I. Environmental Production Efficiency in the European Union Countries as a Tool for the Implementation of Goal 7 of the 2030 Agenda. Energies 2021, 14, 4593. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Pugazhendhi, R.; Irfan, M.; Mihet-Popa, L.; Campana, P.E.; Khan, I.A. A novel Sustainable Development Goal 7 composite index as the paradigm for energy sustainability assessment: A case study from Europe. Appl. Energy 2022, 307, 118173. [Google Scholar] [CrossRef]
- Chovancová, J.; Vavrek, R. On the Road to Affordable and Clean Energy: Assessing the Progress of European Countries toward Meeting SDG 7. Pol. J. Environ. Stud. 2022, 31, 1587–1600. [Google Scholar] [CrossRef]
- Włodarczyk, B.; Firoiu, D.; Ionescu, G.H.; Ghiocel, F.; Szturo, M.; Markowski, L. Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries. Energies 2021, 14, 2323. [Google Scholar] [CrossRef]
- Chuliá-Jordán, R.; Vilches Peña, A.; Calero Llinares, M. The Press as a Resource for Promoting Sustainability Competencies in Teacher Training: The Case of SDG 7. Sustainability 2022, 14, 857. [Google Scholar] [CrossRef]
- Cebrián, G.; Junyent, M. Competencies in Education for Sustainable Development: Exploring the Student Teachers’ Views. Sustainability 2015, 7, 2768–2786. [Google Scholar] [CrossRef] [Green Version]
- Aznar, P.; Calero, M.; Martínez-Agut, M.P.; Mayoral, O.; Ull, À.; Vázquez-Verdera, V.; Vilches, A. Training Secondary Education Teachers through the Prism of Sustainability: The Case of the Universitat de València. Sustainability 2018, 10, 4170. [Google Scholar] [CrossRef]
- Kates, R.W.; Clark, W.C.; Corell, R.; Hall, J.M.; Jaeger, C.C.; Lowe, I.; McCarthy, J.J.; Schellnhuber, H.J.; Bolin, B.; Dickson, N.M.; et al. Sustainability Science. Science 2001, 292, 641–642. [Google Scholar] [CrossRef]
- Komiyama, H.; Takeuchi, K. Sustainability science: Building a new discipline. Sustain. Sci. 2006, 1, 1–6. [Google Scholar] [CrossRef]
- Gao, X.; Wu, M.; Niu, Z.; Chen, F. Global Identification of Unelectrified Built-Up Areas by Remote Sensing. Remote Sens. 2022, 14, 1941. [Google Scholar] [CrossRef]
- Gao, X.; Wu, M.; Gao, J.; Han, L.; Niu, Z.; Chen, F. Modelling Electricity Consumption in Cambodia Based on Remote Sensing Night-Light Images. Appl. Sci. 2022, 12, 3971. [Google Scholar] [CrossRef]
- Rao, N.D. Does (better) electricity supply increase household enterprise income in India? Energy Policy 2013, 57, 532–541. [Google Scholar] [CrossRef]
Country | 2005 | 2009 | 2020 |
---|---|---|---|
Belgium (BE) | 28 (0.1587) | 27 (0.1734) | 25 (0.1835) |
Bulgaria (BG) | 29 (0.1537) | 29 (0.1354) | 28 (0.1732) |
Czechia (CZ) | 14 (0.2339) | 12 (0.2444) | 13 (0.2368) |
Denmark (DK) | 4 (0.2886) | 2 (0.3151) | 4 (0.2753) |
Germany (DE) | 17 (0.2280) | 19 (0.2212) | 22 (0.2102) |
Estonia (EE) | 3 (0.2926) | 3 (0.2858) | 3 (0.2796) |
Ireland (IE) | 24 (0.2165) | 22 (0.2124) | 5 (0.2714) |
Greece (GR) | 13 (0.2362) | 20 (0.2162) | 24 (0.1970) |
Spain (ES) | 10 (0.2453) | 11 (0.2539) | 16 (0.2323) |
France (FR) | 12 (0.2390) | 15 (0.2319) | 15 (0.2347) |
Croatia (HR) | 2 (0.2965) | 5 (0.2809) | 8 (0.2685) |
Italy (IT) | 16 (0.2281) | 18 (0.2250) | 17 (0.2305) |
Cyprus (CY) | 27 (0.1667) | 28 (0.1676) | 29 (0.1689) |
Latvia (LV) | 9 (0.2512) | 13 (0.2433) | 7 (0.2700) |
Lithuania (LT) | 22 (0.2181) | 25 (0.2094) | 27 (0.1789) |
Luxembourg (LU) | 30 (0.1193) | 30 (0.1330) | 30 (0.1582) |
Hungary (HU) | 26 (0.2146) | 14 (0.2383) | 14 (0.2349) |
Malta (MT) | 15 (0.2313) | 26 (0.2090) | 20 (0.2260) |
Netherlands (NL) | 18 (0.2262) | 16 (0.2313) | 21 (0.2179) |
Austria (AT) | 8 (0.2541) | 7 (0.2567) | 12 (0.2459) |
Poland (PL) | 19 (0.2223) | 17 (0.2305) | 11 (0.2611) |
Portugal (PT) | 21 (0.2183) | 21 (0.2158) | 19 (0.2268) |
Romania (RO) | 25 (0.2152) | 6 (0.2738) | 2 (0.2938) |
Slovenia (SL) | 6 (0.2708) | 8 (0.2565) | 10 (0.2659) |
Slovakia (SK) | 23 (0.2174) | 9 (0.2551) | 18 (0.2285) |
Finland (FI) | 20 (0.2184) | 24 (0.2099) | 23 (0.2045) |
Sweden (SE) | 5 (0.2808) | 4 (0.2854) | 6 (0.2712) |
Iceland (IS) | 11 (0.2437) | 23 (0.2113) | 26 (0.1827) |
Norway (NO) | 1 (0.3487) | 1 (0.3225) | 1 (0.3038) |
United Kingdom (UK) | 7 (0.2657) | 10 (0.2549) | 9 (0.2678) |
Relative Dynamics of SDG7 Implementation | ⟶ Ranking of Countries with Respect to SDG7 Implementation in 2020 ⟶ | ||
---|---|---|---|
90⟶⟶ ⟶ Clusters of countries ⟶⟶ | initial low level, then increase | C1 | LV IE |
steady increase | C2 | LU BE PL RO | |
increase, then steady and decline at the end | C3 | SK CZ DK | |
fluctuations throughout the whole period | C4 | IT SL EE | |
steady with decline in the middle | C5 | DE MT UK | |
increases and decreases; 2007–2009 decline | C6 | CY BG PT HU | |
steady, then drop and low at the end | C7 | NL ES SE | |
decrease throughout the whole period | C8 | LT IS GR FI FR AT HR NO |
Clusters | GDP Per Capita | Unemployment Rate | In Work at-Risk-of-Poverty Rate | |||
---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |
C1 | ||||||
C2 | ||||||
C3 | ||||||
C4 | ||||||
C5 | ||||||
C6 | ||||||
C7 | ||||||
C8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmytrów, K.; Bieszk-Stolorz, B.; Landmesser-Rusek, J. Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method. Energies 2022, 15, 7756. https://doi.org/10.3390/en15207756
Dmytrów K, Bieszk-Stolorz B, Landmesser-Rusek J. Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method. Energies. 2022; 15(20):7756. https://doi.org/10.3390/en15207756
Chicago/Turabian StyleDmytrów, Krzysztof, Beata Bieszk-Stolorz, and Joanna Landmesser-Rusek. 2022. "Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method" Energies 15, no. 20: 7756. https://doi.org/10.3390/en15207756
APA StyleDmytrów, K., Bieszk-Stolorz, B., & Landmesser-Rusek, J. (2022). Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method. Energies, 15(20), 7756. https://doi.org/10.3390/en15207756