Biodiesel Synthesis from Milk Thistle (Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Preparation
2.2. ZnO Catalyst Synthesis
2.3. Catalyst Characterizations by XRD and SEM
2.4. Oil Extraction from Feedstock
2.5. Free Fatty Acid Content Determination
- A = potassium hydroxide (KOH) volume used in the sample titration;
- B = potassium hydroxide (KOH) volume used in blank titration;
- C = potassium hydroxide (KOH) concentration (g/L);
- V = volume of oil sample.
2.6. Biodiesel Synthesis Process
2.7. Fuel Property Determination
2.8. Chemical Assessment of Biodiesel Synthesis
2.9. Fourier Transform Infrared Analysis of SMB
2.10. NMR Spectroscopy of SMB
- C = oil-to-biodiesel conversion percentage;
- AMe = methoxy proton integration value in biodiesel;
- ACH2 = α-methylene proton integration value in biodiesel.
2.11. GC-MS Determination of FAMEs
3. Results and Discussion
3.1. X-ray Diffraction of ZnO Nanocatalysts
3.2. Scanning Electron Microscopic Study of ZnO
3.3. Oil Extraction and FFA Content Determination
3.4. Biodiesel Synthesis and Optimization
3.4.1. Oil-to-Methanol Ratio
3.4.2. Catalyst Concentration
3.4.3. Reaction Temperature
3.4.4. Reaction Time
3.5. Physical and Fuel Properties of Biodiesel
3.6. H-NMR Study of SMB
3.7. 13C-NMR Study of SMB
3.8. Qualitative and Quantitative Analysis of SMB
3.9. FT-IR Analysis of SMB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASTM | American Society for Testing and Materials |
CP | Cloud Point |
FAME | Fatty Acid Methyl Esters |
FFA | Free Fatty Acid |
GC-MS | Gas Chromatography–Mass Spectrometry |
FT-IR spectroscopy | Fourier Transform Infrared Spectroscopy |
H and C-NMR | Nuclear Magnetic Resonance |
HHV | Higher Heating Value |
PMCC | Flash Point (Pensky-Martens Closed Cup) |
PP | Pour Point |
SEM | Scanning Electron Microscopy |
SMB | Silybum Marianum Biodiesel |
XRD | X-ray Diffraction |
ZnO | Zinc Oxide |
References
- Zahed, M.A.; Revayati, M.; Shahcheraghi, N.; Maghsoudi, F.; Tabari, Y. Modeling and optimization of biodiesel synthesis using TiO2–ZnO nanocatalyst and characteristics of biodiesel made from waste sunflower oil. Curr. Res. Green Sustain. Chem. 2021, 4, 100223. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Ramakrishnan, V.V.; Dave, D.; Liu, Y.; Routray, W.; Murphy, W. Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. Processes 2021, 9, 700. [Google Scholar] [CrossRef]
- Kumar, S.; Shamsuddin, M.R.; Farabi, M.S.A.; Saiman, M.I.; Zainal, Z.; Taufiq-Yap, Y.H. Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Convers. Manag. 2020, 226, 113366. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Ong, H.C.; Mahlia, T.M.I.; Mofijur, M.; Silitonga, A.S.; Rahman, S.M.A.; Ahmad, A. State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 2020, 8, 101. [Google Scholar] [CrossRef]
- Gupta, J.; Agarwal, M.; Dalai, A.K. Experimental evaluation of the catalytic efficiency of calcium based natural and modified catalyst for biodiesel synthesis. Int. J. Green Energy 2017, 14, 878–888. [Google Scholar] [CrossRef]
- Narasimhan, M.; Chandrasekaran, M.; Govindasamy, S.; Aravamudhan, A. Heterogeneous nanocatalysts for sustainable biodiesel production: A review. J. Environ. Chem. Eng. 2021, 9, 104876. [Google Scholar] [CrossRef]
- Toledo Arana, J.; Torres, J.J.; Acevedo, D.F.; Illanes, C.O.; Ochoa, N.A.; Pagliero, C.L. One-step synthesis of CaO-ZnO efficient catalyst for biodiesel production. Inter. J. Chem. Eng. 2019, 2019, 1806017. [Google Scholar] [CrossRef]
- Deshmane, V.G.; Gogate, P.R.; Pandit, A.B. Ultrasound-assisted synthesis of biodiesel from palm fatty acid distillate. Ind. Eng. Chem. Res. 2009, 48, 7923–7927. [Google Scholar] [CrossRef]
- Veljković, V.B.; Banković-Ilić, I.B.; Stamenković, O.S.; Hung, Y.T. Waste Vegetable Oils, Fats, and Cooking Oils in Biodiesel Production. In Integrated Natural Resources Research; Wang, L.K., Wang, M.H.S., Hung, Y.T., Eds.; Handbook of Environmental Engineering; Springer: Cham, Switzerland, 2021; Volume 22. [Google Scholar] [CrossRef]
- Bohlouli, A.; Mahdavian, L. Catalysts used in biodiesel production: A review. Biofuels 2021, 12, 885–898. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; HM Abd El-Azim, M. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.C.; Zhang, S.; Iqbal, H.M.; Nuhanović, M. Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Dawood, S.; Koyande, A.K.; Ahmad, M.; Mubashir, M.; Asif, S.; Klemeš, J.J.; Bokhari, A.; Saqib, S.; Lee, M.; Qyyum, M.A.; et al. Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies. Chemosphere 2021, 278, 130469. [Google Scholar] [CrossRef] [PubMed]
- Thema, F.T.; Manikandan, E.; Dhlamini, M.S.; Maaza, M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 2015, 161, 124–127. [Google Scholar] [CrossRef]
- Ahmad, M.; Zafar, M.; Sultana, S.; Azam, A.; Khan, M.A. The Optimization of Biodiesel Production from a Novel Source of Wild Non-Edible Oil Yielding Plant Silybum Marianum. Int. J. Green Energy 2014, 11, 589–594. [Google Scholar] [CrossRef]
- Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)-Chemistry, Bioavailability, and Metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef] [Green Version]
- Lahure, P.; Salunke, P.; Soliwal, R.; Yadav, A.; Tripathi, S.; Koser, A.A. X-ray Diffraction Study of ZnO Nanoparticles. Int. J. Sci. Res. Phys. Appl. Sci. 2015, 3, 32–33. [Google Scholar]
- Scherrer, P. Göttinger Nachrichten Gesell. 1918, Volume 2, p. 98. Available online: https://en.wikipedia.org/wiki/Scherrer_equation#cite_ref-1 (accessed on 12 June 2022).
- Theivasanthi, T.; Alagar, M. Nano sized copper particles by electrolytic synthesis and characterizations. Int. J. Phys. Sci. 2011, 6, 3662–3671. [Google Scholar] [CrossRef]
- Jan, H.A.; Šurina, I.; Zaman, A.; Al-Fatesh, A.S.; Rahim, F.; Al-Otaibi, R.L. Synthesis of Biodiesel from Ricinus communis L. Seed Oil, a Promising Non-Edible Feedstock Using Calcium Oxide Nanoparticles as a Catalyst. Energies 2022, 15, 6425. [Google Scholar]
- Ullah, K.; Jan, H.A.; Ahmad, M.; Ullah, A. Synthesis and structural characterization of biofuel from Cocklebur sp.; using zinc oxide nano-particle: A novel energy crop for bioenergy industry. Front. Bioeng. Biotech. 2020, 8, 756. [Google Scholar] [CrossRef]
- Birla, A.; Singh, B.; Upadhyay, S.; Sharma, Y. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol. 2012, 106, 95–100. [Google Scholar] [CrossRef]
- Takase, M.; Feng, W.; Wang, W.; Gu, X.; Zhu, Y.; Li, T.; Wu, X. Silybum marianum oil as a new potential non-edible feedstock for biodiesel: A comparison of its production using conventional and ultrasonic assisted method. Fuel Process. Technol. 2014, 123, 19–26. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Ahmed, K.M.; Dheyab, M.M. Silybum marianum L. seed oil: A novel feedstock for biodiesel production. Arab. J. Chem. 2017, 10, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Samanta, S.; Sahoo, R.R. Waste cooking (palm) oil as an economical source of biodiesel production for alternative green fuel and efficient lubricant. BioEnergy Res. 2021, 14, 163–174. [Google Scholar] [CrossRef]
- Gowthambabu, V.; Balamurugan, A.; Satheeshkumar, S.; Kanmani, S.S. ZnO nanoparticles as efficient sunlight driven photocatalyst prepared by solution combustion method involved lime juice as biofuel. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119857. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, V.K.; Manoharan, K.; Raman, K.; Sundaram, R. Efficient sunlight-driven photocatalytic behavior of zinc sulfide nanorods towards Rose Bengal degradation. J. Mater. Sci. Mater. Electron. 2020, 31, 14795–14809. [Google Scholar] [CrossRef]
- Fan, M.; Liu, Y.; Zhang, P.; Jiang, P. Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification. Fuel Process. Technol. 2016, 149, 163–168. [Google Scholar] [CrossRef]
- Awual, M.R.; Yaita, T.; Shiwaku, H. Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem. Eng. J. 2013, 228, 327–335. [Google Scholar] [CrossRef]
- Takase, M.; Zhang, M.; Feng, W.; Chen, Y.; Zhao, T.; Cobbina, S.J.; Wu, X. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel. Energy Convers. Manag. 2014, 80, 117–125. [Google Scholar] [CrossRef]
- Worapun, I.; Pianthong, K.; Thaiyasuit, P. Two-step biodiesel production from crude Jatropha curcas L. oil using ultrasonic irradiation assisted. J. Oleo Sci. 2012, 61, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Meher, L.; Vidya Sagar, D.; Naik, S. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Kumar, K. Standardization of non-edible Pongamia pinnata oil methyl ester conversion using hydroxyl content and GC–MS analysis. J. Taiwan Inst. Chem. Eng. 2013, 45, 1485–1489. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Sabio, E.; Ramiro, M.J. Preparation and properties of biodiesel from Cynara cardunculus L. oil. Ind. Eng. Chem. Res. 1999, 38, 2927–2931. [Google Scholar] [CrossRef]
- Bojan, S.G.; Durairaj, S.K. Producing Biodiesel from High Free Fatty Acid Jatropha Curcas Oil by a Two Step Method—An Indian Case Study. J. Sustain. Energy Environ. 2012, 3, 63–66. [Google Scholar]
- Leung, D.Y.C.; Guo, Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Technol. 2006, 87, 883–890. [Google Scholar] [CrossRef]
- Silva, C.D.; Oliveira, J.V. Biodiesel production through non-catalytic supercritical transesterification: Current state and perspectives. Braz. J. Chem. Eng. 2014, 31, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Barros, S.D.S.; Junior, W.A.P.; Sá, I.S.; Takeno, M.L.; Nobre, F.X.; Pinheiro, W.; de Freitas, F.A. Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour. Technol. 2020, 312, 123569. [Google Scholar] [CrossRef]
- Phan, A.N.; Phan, T.M. Biodiesel production from waste cooking oils. Fuel 2008, 87, 3490–3496. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 2003, 90, 229–240. [Google Scholar] [CrossRef]
- Mathiyazhagan, M.; Ganapathi, A. Factors affecting biodiesel production. Res. Plant Biol. 2011, 1, 1–5. [Google Scholar]
- Gebremariam, S.N.; Marchetti, J.M. Economics of biodiesel production. Energy Convers. Manag. 2018, 168, 74–84. [Google Scholar] [CrossRef]
- Dhawane, S.H.; Karmakar, B.; Ghosh, S.; Halder, G. Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. J. Environ. Chem. Eng. 2018, 6, 3971–3980. [Google Scholar] [CrossRef]
- Ávila Vázquez, V.; Díaz Estrada, R.A.; Aguilera Flores, M.M.; Escamilla Alvarado, C.; Correa Aguado, H.C. Transesterification of non-edible castor oil (Ricinus communis L.) from Mexico for biodiesel production: A physicochemical characterization. Biofuels 2020, 11, 753–762. [Google Scholar] [CrossRef]
- Wang, R.; Hanna, M.A.; Zhou, W.W.; Bhadury, P.S.; Chen, Q.; Song, B.A.; Yang, S. Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L.; Sapium sebiferum L. and Jatropha curcas L. Bioresour. Technol. 2011, 102, 1194–1199. [Google Scholar] [CrossRef]
- Kaisan, M.U.; Anafi, F.O.; Nuszkowski, J.; Kulla, D.M.; Umaru, S. Calorific value, flash point and cetane number of biodiesel from cotton, jatropha and neem binary and multi-blends with diesel. Biofuels 2017, 11, 321–327. [Google Scholar] [CrossRef]
- Refaat, A.A.; Attia, N.K.; Sibak, H.A.; El Sheltawy, S.T.; El Diwani, G.I. Production optimization and quality assessment of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Technol. 2008, 5, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.M.; Alvim-Ferraz, M.; Almeida, M.F. Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 2008, 87, 3572–3578. [Google Scholar] [CrossRef]
- Knothe, G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2009, 2, 759–766. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Rasul, M.G.; Atabani, A.E.; Hazrat, M.A.; Mahmudul, H.M. Effect of biodiesel-diesel blending on physico-chemical properties of biodiesel produced from Moringa oleifera. Procedia Eng. 2015, 105, 665–669. [Google Scholar] [CrossRef]
- Bagher, A.M.; Vahid, A.; Mohsen, M.; Reza, B.M. Effect of Using Renewable Energy in Public Health. Am. J. Energy Sci. 2016, 3, 1–9. [Google Scholar]
- Kumar, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017, 190, 328–350. [Google Scholar] [CrossRef]
- Bannister, C.D.; Chuck, C.J.; Bounds, M.; Hawley, J.G. Oxidative stability of biodiesel fuel. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 225, 99–114. [Google Scholar] [CrossRef]
- Fregolente, P.B.L.; Fregolente, L.V.; Wolf Maciel, M.R. Water content in biodiesel, diesel, and biodiesel–diesel blends. J. Chem. Eng. Data 2012, 57, 1817–1821. [Google Scholar] [CrossRef]
- Da Costa Cardoso, L.; de Almeida, F.N.C.; Souza, G.K.; Asanome, I.Y.; Pereira, N.C. Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production. Renew. Energy 2019, 133, 743–748. [Google Scholar] [CrossRef]
- Lugo-Méndez, H.; Sánchez-Domínguez, M.; Sales-Cruz, M.; Olivares-Hernández, R.; Lugo-Leyte, R.; Torres-Aldaco, A. Synthesis of biodiesel from coconut oil and characterization of its blends. Fuel 2021, 295, 120595. [Google Scholar] [CrossRef]
- Demirbaş, A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Convers. Manag. 2003, 44, 2093–2109. [Google Scholar] [CrossRef]
- Sivaramakrishnan, K.; Ravikumar, P. Determination of higher heating value of biodiesels. Int. J. Eng. Sci. Technol. 2011, 3, 7981–7987. [Google Scholar]
- Anand, K.; Ranjan, A.; Mehta, P.S. Estimating the viscosity of vegetable oil and biodiesel fuels. Energy Fuels 2010, 24, 664–672. [Google Scholar] [CrossRef]
- Demirbaş, A. Production of biodiesel from algae oils. Energy Sources A Recovery Util. Environ. Eff. 2008, 31, 163–168. [Google Scholar] [CrossRef]
- Knothe, G. Monitoring a progressing transesterification reaction by fiber optic NIR spectroscopy with correlation to 1H NMR spectroscopy. J. Am. Oil Chem. Soc. 2000, 77, 489e93. [Google Scholar] [CrossRef]
- Portela, N.A.; Oliveira, E.C.; Neto, A.C.; Rodrigues, R.R.; Silva, S.R.; Castro, E.V.; Filgueiras, P.R. Quantification of biodiesel in petroleum diesel by 1H NMR: Evaluation of univariate and multivariate approaches. Fuel 2016, 166, 12–18. [Google Scholar] [CrossRef]
- Ullah, K.; Ahmad, M.; Qiu, F. Assessing the experimental investigation of milk thistle oil for biodiesel production using base catalyzed transesterification. Energy 2015, 89, 887–895. [Google Scholar] [CrossRef]
- Asci, F.; Aydin, B.; Akkus, G.U.; Unal, A.; Erdogmus, S.F.; Korcan, S.E.; Jahan, I. Fatty acid methyl ester analysis of Aspergillus fumigatus isolated from fruit pulps for biodiesel production using GC-MS spectrometry. Bioengineered 2020, 11, 408–415. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, S.; Demshemino, I.; Yahaya, M.; Nwadike, I.; Okoro, L. A review on the spectroscopic analyses of biodiesel. Eur. Int. J. Sci. Tech. 2013, 2, 137–146. [Google Scholar]
- Atabani, A.E.; Shobana, S.; Mohammed, M.N.; Uğuz, G.; Kumar, G.; Arvindnarayan, S.; Ala’a, H. Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: Blending with higher alcohols, FT–IR, TGA, DSC and NMR characterizations. Fuel 2019, 244, 419–430. [Google Scholar] [CrossRef]
- Miglio, R.; Palmery, S.; Salvalaggio, M.; Carnelli, L.; Capuano, F.; Borrelli, R. Microalgae triacylglycerols content by FT-IR spectroscopy. J. Appl. Phycol. 2013, 25, 1621–1631. [Google Scholar] [CrossRef]
- Soon, L.B.; Rus, A.Z.M.; Hasan, S. Continuous biodiesel production using ultrasound clamp on tubular reactor. Int. J. Automot. Mech. Eng. 2013, 8, 1396–1405. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Siatis, N.G.; Kimbaris, A.C.; Pappas, C.S.; Tarantilis, P.A.; Polissiou, M.G. Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. J. Am. Oil Chem. Soc. 2006, 83, 53–57. [Google Scholar] [CrossRef]
- Taufiq-Yap, Y.H.; Abdullah, N.F.; Basri, M. Biodiesel production via transesterification of palm oil using NaOH/Al2O3 catalysts. Sains Malays. 2011, 40, 587–594. [Google Scholar]
Fuel Property | ASTM Methods | 1 ASTM D6751 | 2 SMB |
---|---|---|---|
Acid value (KOH mg/kg) | ASTM D-664 | 0.80 | 0.74 |
Flash Point PMCC (°C) | D-93 | >93 | 87 |
Density at 15 °C (kg/L) | D-4052 | 0.820–0.900 | 0.857 |
Kinematic Viscosity at 40 °C (mm2/s) | D-445 | 1.9–6 | 4.69 |
Pour Point (°C) | D-97-12 | −15 to 16 | −8 |
Cloud Point (°C) | D-2500-11 | −3 to 12 | −2 |
Sulphur (wt%) | D-5453 | 0.007 | 0.00018 |
Calorific Value (kJ/kg) | D-5865 | 35,000 | 26,984 |
Cetane no. | D-613 | 45 | 49 |
Oxidative stability at 110 °C (min) | EN-14112 | 3 | 2.8 |
Water content (mg/kg) | ASTM D-6304 | ≤0.05 | 0.039 |
Refractive index at 20 °C | ASTM D-1747 | ---- | 1.437 |
Iodine number (mg I2/100) | ASTM D-4607 | ≤120 | 124 |
Higher heating value (MJ/kg) | ASTM D-240 | 39–43 | 40.86 |
Distillation temperature for 90% recovery | ASTM D-1160-06 | 360 | 345 |
No. | Identified FAMEs | Formula | CAS* | RT* | C* |
---|---|---|---|---|---|
1 | Caprylic acid methyl ester | C9H18O2 | 111-11-5 | 4.739 | 0.16 |
2 | Myristic acid methyl ester | C15H30O2 | 124-10-7 | 10.168 | 0.34 |
3 | Pentadecanoic acid methyl ester | C16H32O2 | 7132-64-1 | 11.267 | 1.08 |
4 | Palmitic acid methyl ester | C17H34O2 | 112-39-0 | 13.424 | 16.11 |
5 | Palmitoleic acid methyl ester | C17H32O2 | 1120-25-8 | 13.878 | 0.12 |
6 | Margaric acid methyl ester | C18H36O2 | 1731-92-6 | 15.500 | 0.21 |
7 | Heptadecenoic acid methyl ester | C18H36O2 | 1731-92-6 | 15.943 | 0.27 |
8 | Stearic acid methyl ester | C19H38O2 | 112-61-8 | 17.897 | 2.33 |
9 | Oleic acid methyl ester | C19H36O2 | 112-62-9 | 18.375 | 8.52 |
10 | Linoleic acid methyl ester | C19H34O2 | 112-63-0 | 19.659 | 62.23 |
11 | Octadecenoic acid methyl ester | C19H36O2 | 1937-62-8 | 20.817 | 0.25 |
12 | Linolenic acid methyl ester | C19H34O2 | 112-63-0 | 21.743 | 0.31 |
13 | Arachidic acid methyl ester | C21H42O2 | 1120-28-1 | 24.661 | 4.47 |
14 | 11, 14-Eicosadienoic acid methyl ester | C21H38O2 | 61012-46-2 | 26.948 | 0.39 |
15 | 11, 14, 17-Eicosenoic acid methyl ester | C21H40O2 | 1120-28-1 | 29.259 | 0.81 |
16 | Behenic acid methyl ester | C23H46O2 | 929-77-1 | 31.994 | 0.83 |
17 | Erucic acid methyl ester | C23H44O2 | 1120-34-9 | 33.910 | 0.41 |
18 | 13, 16-Docosadienoic acid methyl ester | C23H42O2 | 61012-47-3 | 35.030 | 0.19 |
19 | Nervonic acid methyl ester | C25H48O2 | 2733-88-2 | 38.611 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, H.A.; Šurina, I.; Al-Fatesh, A.S.; Almutlaq, A.M.; Wali, S.; Lisý, A. Biodiesel Synthesis from Milk Thistle (Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst. Energies 2022, 15, 7818. https://doi.org/10.3390/en15207818
Jan HA, Šurina I, Al-Fatesh AS, Almutlaq AM, Wali S, Lisý A. Biodiesel Synthesis from Milk Thistle (Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst. Energies. 2022; 15(20):7818. https://doi.org/10.3390/en15207818
Chicago/Turabian StyleJan, Hammad Ahmad, Igor Šurina, Ahmed S. Al-Fatesh, Abdulaziz M. Almutlaq, Sher Wali, and Anton Lisý. 2022. "Biodiesel Synthesis from Milk Thistle (Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst" Energies 15, no. 20: 7818. https://doi.org/10.3390/en15207818
APA StyleJan, H. A., Šurina, I., Al-Fatesh, A. S., Almutlaq, A. M., Wali, S., & Lisý, A. (2022). Biodiesel Synthesis from Milk Thistle (Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst. Energies, 15(20), 7818. https://doi.org/10.3390/en15207818