Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review
Abstract
:1. Green Solvent—Deep Eutectic Solvent-like Mixtures
2. The Influence of Various Factors on the Resulting Acidity/Alkalinity of DES-like Mixtures
3. Effect of the Water Content of DES-like Mixtures on Their Physicochemical Properties
4. Pretreatment of Lignocelluloses with DES-like Mixtures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Häckl, K.; Kunz, W. Some aspects of green solvents. Comptes Rendus Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem Comm. 2003, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Basic and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Tang, B.; Row, K. Recent developments in deep eutectic solvents in chemical sciences. Mon. Chem. 2013, 144, 1427–1454. [Google Scholar] [CrossRef]
- Baranipour, S.; Sardroodi, J.J.; Avestan, M.S.; Ebrahimzadeh, A.R. Structural and dynamic properties of eutectic mixtures based on menthol and fatty acids derived from coconut oil: A MD simulation study. Sci. Rep. 2022, 12, 5153. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Vigier, K.D.; Royer, S.; Jerome, F. Deep eutectic solvents:Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep eutectic solvents:A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Abranches, D.O.; Martins, M.A.R.; Silva, L.P.; Schaeffer, N.; Pinho, S.P.; Coutinho, J.A.P. Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest fot type V DES. Chem. Commun. 2019, 55, 10253–10256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Fakayode, O.A.; Yagoub, A.E.A.; Ji, Q.; Zhou, C. Lignin fractionation from lignocellulosic biomas using deep eutectic solvents and its valorization. Renew. Sustain. Energy Rev. 2022, 156, 111986. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural deep eutectic solvent as extraction media fot the main phenolic compounds from olive oil processsing wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Durand, E.; Lecomte, J.; Villeneuve, P. From green chemistry to nature: The versatile role of low transition temperature mixtures. Biochimie 2016, 120, 119–123. [Google Scholar] [CrossRef]
- Jablonský, M.; Šima, J. Is it correct to name DESs deep eutectic solvents? Bioresources 2022, 17, 3880–3882. [Google Scholar] [CrossRef]
- Antenucci, A.; Bonomo, M.; Ghigo, G.; Gontrani, L.; Barolo, C.; Dughera, S. How do arenediazonium salts behave in deep eutectic solvents? A combined experimental and computational approach. J. Mol. Liq. 2021, 339, 116743. [Google Scholar] [CrossRef]
- Ghigo, G.; Bonomo, M.; Antenucci, A.; Reviglio, C.; Dughera, S. Copper-Free Halodediazoniation of Arenediazonium Tetrafluoroborates in Deep Eutectic Solvents-like Mixtures. Molecules 2022, 27, 1909. [Google Scholar] [CrossRef]
- Camões, M.F. Realisation of a Unified pH Scale. Chem. Intern. 2018, 40. Available online: https://www.degruyter.com/document/doi/10.1515/ci-2018-0416/html (accessed on 25 November 2022).
- Woodard & Curran, Inc. 5—Waste Characterization, Industrial Waste Treatment Handbook, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 83–126. ISBN 9780750679633. [Google Scholar] [CrossRef]
- Teng, Z.; Wang, L.; Huang, B.; Yu, Y.; Liu, J.; Li, T. Synthesis of Green Deep Eutectic Solvents for Pretreatment Wheat Straw: Enhance the Solubility of Typical Lignocellulose. Sustainability 2022, 14, 657. [Google Scholar] [CrossRef]
- Sing, M.B.; Kumar, S.V.; Chaudhary, M.; Singh, P. A mini review on synthesis, properties and applications of deep eutectic solvents. J. Indian Chem. Soc. 2021, 98, 100210. [Google Scholar] [CrossRef]
- Arrora, S.; Gupta, N.; Singh, V. pH-Controlled Efficient Conversion of Hemicellulose to Furfural Using Choline-Based Deep Eutectic Solvents as Catalysts. ChemSusChem 2021, 14, 3953–3958. [Google Scholar] [CrossRef] [PubMed]
- Lomba, L.; Ribate, P.; Sangüesa, E.; Concha, J.; Garralaga, P.; Errazquim, D.; García, C.B.; Giner, B. Deep eutectic solvents: Are they safe? Appl. Sci. 2021, 11, 10061. [Google Scholar] [CrossRef]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashed, I.M. Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. J. Chem. Eng. Data 2010, 55, 4632–4637. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Xu, P.; Yang, F.X.; Wu, H.; Zong, M.H.; Lou, W.Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Sekharan, T.R.; Chandira, R.M.; Rajesh, S.; Tamilvanan, S.; Vijayakumar, C.; Venkateswarlu, B. pH, viscosity of hydrophobic based natural deep eutectic solvents and the effect of curcumin solubility in it. Bio. Res. App. Chem. 2021, 11, 14620–14633. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; Alnashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit Sugar-Based Deep Eutectic Solvents and Their Physical Properties. Thermochim. Acta 2012, 541, 70–75. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; Alnashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashim, A. Glucose-based Deep Eutectic Solvents: Physical Properties. J. Mol. Liq. 2013, 178, 137–141. [Google Scholar] [CrossRef]
- Abbott, A.P.; Alabdullah, S.S.M.; Al-Murshedi, A.Y.M.; Ryder, K.S. Brønsted acidity in deep eutectic solvents and ionic liquids. Faraday Discuss 2018, 206, 365–377. [Google Scholar] [CrossRef]
- Adeyemi, I.; Abu-Zahra, M.R.; AlNashef, I.M. Physicochemical Properties of Alkanolamine-choline Chloride Deep Eutectic Solvents: Measurements, Group Contribution and Artificial Intelligence Prediction Techniques. J. Mol. Liq. 2018, 256, 581–590. [Google Scholar] [CrossRef]
- Saputra, R.; Walvekar, R.; Khalid, M.; Mubarak, N.M. Synthesis and Thermophysical Properties of Ethylammonium Chloride-Glycerol-ZnCl2 Ternary Deep Eutectic Solvent. J. Mol. Liq. 2020, 310, 113232. [Google Scholar] [CrossRef]
- Bahadori, L.; Chakrabarti, M.H.; Mjalli, F.S.; AlNashef, I.M.; Abdul-Naman, N.S.; Ali-Hashim, M.A. Physichochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim. Acta 2013, 113, 205–211. [Google Scholar] [CrossRef]
- Jibril, B.; Mjalli, F.; Naser, J.; Gano, Z. New tetrapropylammonium bromide-based deep eutectic solvents: Synthesis and characterizations. J. Mol. Liq. 2014, 199, 462–469. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Naser, J.; Jibril, B.; Alizadeh, V.; Gano, Z. Tetrabutylammonium chloride based ionic liquid analogues and their physical properties. J. Chem. Eng. Data 2014, 59, 2242–2251. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Physicochemical properties of deep eutectic solvents: A review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- Passos, H.; Tavares, D.J.P.; Ferreira, A.M.; Freire, M.G.; Coutinho, J.A.P. Are Aqueous Biphasic Systems Composed of Deep Eutectic Solvents Ternary or Quaternary Systems? ACS Sustain. Chem. Eng. 2016, 4, 2881–2886. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, D.; Chen, W.; Fu, L.; Mu, T. Water absorption by deep eutectic solvents. Phys. Chem. Chem. Phys. 2019, 21, 2601–2610. [Google Scholar] [CrossRef]
- Kivelä, H.; Salomäki, M.; Vainikka, P.; Mäkilä, E.; Poletti, F.; Ruggeri, S.; Terzi, F.; Lukkari, J. Effect of water on a hydrophobic deep eutectic solvent. J. Phys. Chem. B 2022, 126, 513–527. [Google Scholar] [CrossRef]
- Shah, D.; Mjalli, F.S. Effect of water on the thermo-physical properties of Reline: An experimental and molecular simulation based approach. Phys. Chem. Chem. Phys. 2014, 16, 23900–23907. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Cai, C.; Yu, W.; Wang, C.; Liu, L.; Li, F.; Tan, Z. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin. J. Mol. Liq. 2019, 287, 110957. [Google Scholar] [CrossRef]
- Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH behavior of seventeen deep eutectic solvents. BioResources 2018, 13, 5042–5051. [Google Scholar] [CrossRef]
- Sheldon, R.A. Biocatalysis and Biomass Conversion in Alternative Reaction Media. Chem. Eur. J. 2016, 22, 12984–12999. [Google Scholar] [CrossRef] [PubMed]
- Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions. Fluid Phase Equilib. 2017, 441, 43–48. [Google Scholar] [CrossRef]
- Mitar, A.; Panić, M.; Prlić Kardum, J.; Halambek, J.; Sander, A.; Zagajski Kučan, K.; Radojčić Redovniković, I.; Radoševiić, K. Physicochemical Properties, Cytotoxicity, and Antioxidative Activity of Natural Deep Eutectic Solvents Containing Organic Acid. Chem. Biochem. Eng. Q 2019, 33, 1–18. [Google Scholar] [CrossRef]
- Panić, M.; Radović, M.; Bubalo, M.C.; Radošević, K.; Coutinho, J.A.P.; Redovniković, I.R.; Jurinjak Tušek, A. Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles’ Molecular Descriptors. Molecules 2022, 27, 4489. [Google Scholar] [CrossRef]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Hailegiorgis, S.M.; Murshid, G.; Khan, S.N. Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J. Chem. Therm. 2018, 116, 50–60. [Google Scholar] [CrossRef]
- Jablonsky, M.; Jancikova, V.; Sima, J.; Jablonsky, J. Physical and Chemical Characterization of Water Containing Choline Chloride-based Solvents with Lactic Acid and Dihydric Alcohol. Bio. Res. App. Chem. 2022, 13, 167. [Google Scholar] [CrossRef]
- Le Man, H.; Behera, S.K.; Park, H.S. Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Technol. 2010, 7, 157–164. [Google Scholar] [CrossRef]
- Bohunická, A. The Combination of Deep Eutectic Solvents with Dihydric Alcohols and Their Effect on Pulp Delignification. Diploma Thesis, Slovak Technical University in Bratislava, Bratislava, Slovakia, 2019. [Google Scholar]
- Jablonsky, M.; Sima, J. Deep Eutectic Solvents in Biomass Valorization; Spektrum STU: Bratislava, Slovakia, 2019; p. 176. [Google Scholar]
- Jablonsky, M.; Sima, J.; Skulcova, A. Use of deep eutectic solvents in polymer chemistry—A review. Molecules 2019, 24, 3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonsky, M.; Skulcova, A.; Malvis, A.; Sima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, T.; Fourmentin, S.; Gergges, H.G. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Magalhães, S.; Moreira, A.; Almeida, R.; Cruz, P.F.; Alves, L.; Costa, C.; Mendes, C.; Medronho, B.; Romano, A.; Carvalho, M.G.; et al. Acacia Wood Fractionation Using Deep Eutectic Solvents: Extraction, Recovery, and Characterization of the Different Fractions. ACS Omega 2022, 7, 26005–26014. [Google Scholar] [CrossRef]
- Phromphithak, S.; Tippayawong, N.; Onsree, T.; Lauterbach, J. Pretreatment of corncob with green deep eutectic solvent to enhance cellulose accessibility for energy and fuel applications. Energy Rep. 2022, 8, 579–585. [Google Scholar] [CrossRef]
- Masuku, F.; Ayaa, F.; Onyelucheya, C.; Iwarere, S.A.; Daramola, M.O.; Kirabira, J. Fractionation of yellow thatching grass (Hyparrhenia filipendula) for sugar production using combined Alkaline and Deep eutectic solvent pretreatment. Res. Square 2022. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Jiang, J.; Zhang, Y.; Bi, S.; Wang, H.M. Revealing structural and functional specificity of lignin from tobacco stalk during deep eutectic solvents deconstruction aiming to targeted valorization. Ind. Crops Prod. 2022, 180, 114696. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Barta, K.; Deuss, P.J. The Effect of Acidic Ternary Deep Eutectic Solvent Treatment on Native Lignin. ACS Sustain. Chem. Eng. 2022, 10, 12569–12579. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, W.; Tang, Y.; Li, M.; Peng, F.; Bian, J. Mild pretreatment with Brønsted acidic deep eutectic solvents for fractionating β–O–4 linkage-rich lignin with high sunscreen performance and evaluation of enzymatic saccharification synergism. Bioresour. Technol. 2022, 368, 128258. [Google Scholar] [CrossRef] [PubMed]
- Provost, V.; Dumarcay, S.; Ziegler-Devin, I.; Boltoeva, M.; Trébouet, D.; Villain-Gambier, M. Deep eutectic solvent pretreatment of biomass: Influence of hydrogen bond donor and temperature on lignin extraction with high β-O-4 content. Bioresour. Technol. 2022, 349, 126837. [Google Scholar] [CrossRef]
- Jančíková, V.; Jablonský, M. The role of deep eutectic solvents in the production of cellulose nanomaterials from biomass. Acta Chimica Slovaca 2022, 15, 61–71. [Google Scholar] [CrossRef]
- Nie, K.; Liu, S.; Zhao, T.; Tan, Z.; Zhang, Y.; Song, Y.; Li, B.; Li, L.; Lv, W.; Han, G.; et al. Efficient fractionation of biomass by acid deep eutectic solvent (DES) and rapid preparation of lignin nanoparticles. Biomass Convers. Biorefin. 2022, 1–11. [Google Scholar] [CrossRef]
- Xie, J.; Xu, J.; Zhang, Z.; Wang, B.; Zhu, S.; Li, J.; Chen, K. New ternary deep eutectic solvents with cycle performance for efficient pretreated radiata pine forming to lignin containing cellulose nanofibrils. Chem. Eng. J. 2023, 451, 138591. [Google Scholar] [CrossRef]
- Wu, W.; He, H.; Dong, Q.; Wang, Y.; An, F.; Song, H. Structural and rheological properties of nanocellulose with different polymorphs, nanocelluloses I and II, prepared by natural deep eutectic solvents from sugarcane bagasse. Int. J. Biol. Macromol. 2022, 220, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Y.; Cheng, H.; Zhou, H. Hemicellulose degradation: An overlooked issue in acidic deep eutectic solvents pretreatment of lignocellulosic biomass. Ind. Crops Prod. 2022, 187, 115335. [Google Scholar] [CrossRef]
- Bai, Y.; Zhanf, X.F.; Wang, Z.; Zheng, T.; Yao, J. Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation. Bioresour. Technol. 2022, 347, 126723. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, W.; Wang, Y.; Li, M.; Peng, F.; Bian, J. Novel recycable Brønsted acidic deep eutectic solvent for mild fractionation of hemicelluloses. Carbohyd. Polym. 2022, 278, 118992. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ. 2020, 5, 8–21. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, F.; Jian, Y.; Chernyshev, V.M.; Zhang, Y.; Wang, Z.; Yuan, Z.; Chen, X. Extraction of flavonodis from Glycyrrhiza residues using deep eutectic solvents and its molecular mechanism. J. Mol. Liq. 2022, 363, 119848. [Google Scholar] [CrossRef]
- Guo, Z.; Mao, J.; Zhang, Q.; Xu, F. Integrated biorefinery of bamboo for fermentable sugars, native-like lignin, and furfural production by novel deep eutectic solvents treatment. Ind. Crops Prod. 2022, 188, 115453. [Google Scholar] [CrossRef]
- Singh, K.; Paidi, M.K.; Kulshrestha, A.; Bharmoria, P.; Mandal, S.K.; Kumar, A. Deep eutectic solvents based biorefining of Value-added chemicals from diatom Thalossiosira andamanica at room temperature. Separ. Purific. Technol. 2022, 298, 121636. [Google Scholar] [CrossRef]
DES-like Mixtures | Molar Ratio | pH |
---|---|---|
Choline chloride/Urea | 1:2 | 8.55 |
Choline chloride/Ethanediol | 1:2 | 3.42 |
Choline chloride/Lactic acid | 1:2 | 0.25 |
Choline chloride/Urea + 10 wt% H2O | 1:2 | alkaline |
Choline chloride/Urea + 10 wt% H2O + 1 wt% NaOH | 1:2 | 13.41 |
Choline chloride/Ethanediol/Lactic acid | 1:1:1 | acidic |
DES-like Mixtures | Molar Ratio | pH | Yield (%) |
---|---|---|---|
Choline chloride/p-Toluene sulfonic acid | 1:1 | 1.0 | 85.4 |
Choline chloride/Oxalic acid | 1:1 | 1.25 | 81.6 |
Choline chloride/Levulinic acid | 1:1 | 1.25 | 82.0 |
Choline chloride/Citric acid | 1:1 | 1.34 | 78.2 |
Choline chloride/Tartaric acid | 1:1 | 2.2 | 77.6 |
Choline chloride/Succinic acid | 1:1 | 2.7 | 68.0 |
Choline chloride/Lactic acid | 1:1 | 3.0 | 51.4 |
DES-like Mixtures | pH | |
---|---|---|
a × 104 | b | |
Methyltriphenylphosphonium bromide/Glycerine | −49 | 7.0887 |
Methyltriphenylphosphonium bromide/Ethylene glycol | −89 | 6.571 |
Methyltriphenylphosphonium bromide/2,2,2-Triflouracetamide | 114 | 2.4267 |
Benzyltriphenylphosphonium chloride/Glycerine | 22 | 6.847 |
Benzyltriphenylphosphonium chloride/Ethylene glycol | −22 | 5.763 |
DES-like Mixtures | Molar Ratio | Temperature (K) | pH |
---|---|---|---|
Methyltriphenylphosphonium bromide/Glycerine | 1:1.75 | 298.15–353.15 | ~7 |
Methyltriphenylphosphonium bromide/Ethylene glycol | 1:4 | 298.15–353.15 | ~6 |
Methyltriphenylphosphonium bromide/2,2,2-Triflouracetamide | 1:8 | 298.15–353.15 | very low, acidic |
Benzyltriphenylphosphonium chloride/Glycerine | 1:5 | 298.15–353.15 | 6.90–7.02 |
Benzyltriphenylphosphonium chloride/Ethylene glycol | 1:3 | 298.15–353.15 | 5.71–5.59 |
DES-like Mixtures | Molar Ratio | Conditions | pH |
---|---|---|---|
Menthol/Thymol | 1:1 | 10 min, 500 rpm, without heat | 6.667 ± 0.037 |
Menthol/Thymol | 1:1 | 10 min, 30–45 °C, 500 rpm, with slight heat | 6.677 ± 0.051 |
Menthol/Thymol | 1:5 | 48 h, 500 rpm, without heat | 6.557 ± 0.037 |
Menthol/Thymol | 1:5 | 1 h, 30–45 °C, 500 rpm, with slight heat | 6.540 ± 0.044 |
Thymol/Menthol | 1:1 | 10 min, 500 rpm, without heat | 6.667 ± 0.037 |
Thymol/Menthol | 1:1 | 10 min, 30–45 °C, 500 rpm, with slight heat | 6.667 ± 0.051 |
Thymol/Menthol | 1:5 | 48 h, 500 rpm, without heat | 6.990 ± 0.037 |
Thymol/Menthol | 1:5 | 1 h, 30–45 °C, 500 rpm, with slight heat | 6.983 ± 0.040 |
Thymol/Camphor | 1:1 | 10 min, 30–45 °C, 500 rpm, with heat | 5.943 ± 0.035 |
Thymol/Camphor | 1:5 | 1 h, 30–45 °C, 500 rpm, with heat | 6.393 ± 0.047 |
Camphor/Thymol | 1:1 | 10 min, 30–45 °C, 500 rpm, with heat | 5.943 ± 0.035 |
Camphor/Thymol | 1:5 | 1 h, 30–45 °C, 500 rpm, with heat | 5.893 ± 0.065 |
Camphor/Menthol | 1:1 | 10 min, 30–45 °C, 500 rpm, with heat | 5.607 ± 0.061 |
Camphor/Menthol | 1:5 | 1 h, 30–45 °C, 500 rpm, with heat | 5.637 ± 0.067 |
Menthol/Camphor | 1:1 | 10 min, 30–45 °C, 500 rpm, with heat | 5.693 ± 0.095 |
Menthol/Camphor | 1:2 | 30 min, 30–45 °C, 500 rpm, with heat | 6.380 ± 0.066 |
DES-like Mixtures | Molar Ratio | pH | Ref. | |
---|---|---|---|---|
a | b/b × 105 * | |||
Choline chloride/D-fructose | 1:1 | −0.0309 | 6.9568 | [21] |
Choline chloride/D-fructose | 1.5:1 | −0.0100 | 7.1757 | [21] |
Choline chloride/D-fructose | 2:1 | −0.0306 | 7.5120 | [21] |
Choline chloride/D-fructose | 2.5:1 | −0.0116 | 7.3893 | [21] |
Choline chloride/D-glucose | 1:1 | 1.671 | −1.596 * | [22] |
Choline chloride/D-glucose | 1.5:1 | 1.678 | −4.554 * | [22] |
Choline chloride/D-glucose | 2:1 | 1.692 | −8.411 * | [22] |
Choline chloride/D-glucose | 2.5:1 | 1.704 | −1.309 * | [22] |
DES-like Mixtures | Molar Ratio | Temperature (K) | pH |
---|---|---|---|
Choline chloride/Diethanolamine | 1:6 | 295.15–353.15 | 11.47–9.98 |
Choline chloride/Methyldiethanolamine | 1:6 | 295.15–353.15 | 11.04–9.87 |
Choline chloride/Monoethanolamine | 1:6 | 295.15–353.15 | 12.81–11.12 |
DES-like Mixtures | Molar Ratio | pH | ||
---|---|---|---|---|
a | b | R2 | ||
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:3:0 | 2.0816 | −0.1336 | 0.9506 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:3:0.25 | 3.1922 | −0.1414 | 0.9905 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:3:0.5 | 3.5460 | −0.1855 | 0.9749 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:4:0 | 2.4767 | −0.1862 | 0.9411 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:4:0.25 | 3.2751 | −0.1350 | 0.9880 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:4:0.5 | 3.5278 | −0.1667 | 0.9795 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:5:0 | 2.6410 | −0.2478 | 0.9212 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:5:0.25 | 3.1387 | −0.1106 | 0.9854 |
Ethyl ammonium chloride/Glycerol/ZnCl2 | 1:5:0.5 | 3.4876 | −0.1491 | 0.9925 |
DES-like Mixtures | Molar Ratio | Temperature (K) | pH | Ref. |
---|---|---|---|---|
Choline chloride/Malonic acid | 1:1 | 298.15 | 1.67 | [34] |
Choline chloride/Oxalic acid | 1:1 | 298.15 | - | [34] |
Choline chloride/Triethanolamine | 1:2 | 298.15 | 10.66 | [34] |
Choline chloride/Zinc nitrate hexahydrate | 1:1 | 298.15 | 1.00 | [34] |
Choline chloride/ 2,2,2-Trifluoroacetamide | 1:2 | 298.15 | 2.36 | [34] |
N,N-diethylethanol ammonium chloride/Malonic acid | 1:1 | 298.15 | 0.98 | [34] |
N,N-diethylethanol ammonium chloride/Zinc nitrate hexahydrate | 1:1 | 298.15 | 0.52 | [34] |
Tetrapropylammonium bromide/Ethylene glycol | 1:3 | 293.15–353.15 | 6.41–5.97 | [35] |
Tetrapropylammonium bromide/Ethylene glycol | 1:4 | 293.15–353.15 | 6.53–6.14 | [35] |
Tetrapropylammonium bromide/Ethylene glycol | 1:5 | 293.15–353.15 | 7.23–6.57 | [35] |
Tetrapropylammonium bromide/ Triethylene glycol | 1:2.5 | 293.15–353.15 | 6.40–6.03 | [35] |
Tetrapropylammonium bromide/ Triethylene glycol | 1:3 | 293.15–353.15 | 5.96–5.85 | [35] |
Tetrapropylammonium bromide/ Triethylene glycol | 1:4 | 293.15–353.15 | 5.85–5.64 | [35] |
Tetrapropylammonium bromide/ Glycerol | 1:2 | 293.15–353.15 | 5.09–4.80 | [35] |
Tetrapropylammonium bromide/ Glycerol | 1:3 | 293.15–353.15 | 5.22–4.94 | [35] |
Tetrapropylammonium bromide/ Glycerol | 1:4 | 293.15–353.15 | 5.15–4.87 | [35] |
Tetrabutylammonium chloride/ Glycerol | 1:3 | 293.15–353.15 | 6.51–6.11 | [36] |
Tetrabutylammonium chloride/ Glycerol | 1:4 | 293.15–353.15 | 8.95–7.50 | [36] |
Tetrabutylammonium chloride/ Glycerol | 1:5 | 293.15–353.15 | 6.81–6.42 | [36] |
Tetrabutylammonium chloride/ Ethylene glycol | 1:2 | 293.15–353.15 | 9.10–7.51 | [36] |
Tetrabutylammonium chloride/ Ethylene glycol | 1:3 | 293.15–353.15 | 9.20–7.76 | [36] |
Tetrabutylammonium chloride/ Ethylene glycol | 1:4 | 293.15–353.15 | 9.35–8.19 | [36] |
Tetrabutylammonium chloride/ Triethylene glycol | 1:1 | 293.15–353.15 | 6.40–5.92 | [36] |
Tetrabutylammonium chloride/ Triethylene glycol | 2:1 | 293.15–353.15 | 6.97–6.21 | [36] |
Tetrabutylammonium chloride/ Triethylene glycol | 3:1 | 293.15–353.15 | 7.70–6.73 | [36] |
Tetrabutylammonium chloride/ Triethylene glycol | 4:1 | 293.15–353.15 | 8.06–7.03 | [36] |
DES-like Mixtures | Molar Ratio | pH |
---|---|---|
Choline chloride/D-sorbitol | 1:1 | 3.86 |
Choline chloride/Urea | 1:2 | 8.81 |
Choline chloride/Oxalic acid | 1:1 | 0.29 |
Choline chloride/Benzoic acid | 1:1 | - |
Choline chloride/Citric acid | 1:1 | 1.41 |
Choline chloride/L(+)-Diethyl L-tartrate | 1:1 | 3.38 |
Choline chloride/Zinc chloride | 1:1 | 4.41 |
Choline chloride/L(+)-lactic acid | 1:1 | 1.18 |
Choline chloride/Glycerol | 1:2 | 6.24 |
Choline chloride/Salicylic acid | 1:1 | - |
Choline chloride/Succinic acid | 1:1 | 1.74 |
Choline chloride/Mannitol | 1:2 | - |
Choline chloride/Acetamide | 1:2 | 6.38 |
Betaine/Glycerol | 1:2 | 6.29 |
Betaine/Citric acid | 1:1 | 2.69 |
Betaine/Urea | 1:2 | 8.47 |
DES-like Mixtures | Molar Ratio | Temperature (K) | pH |
---|---|---|---|
Choline chloride/Citric acid/H2O | 1:1:1.33 | 298.15–333.15 | 1.72–0.92 |
Choline chloride/Citric acid/H2O | 2:1:1.44 | 298.15–333.15 | 1.33–0.98 |
Choline chloride/Ethylene glycol/H2O | 1:2:0.33 | 298.15–333.15 | 4.38–4.00 |
Choline chloride/Glycerol/H2O | 1:2:0.33 | 298.15–333.15 | 4.47–4.12 |
Choline chloride/Glycolic acid/H2O | 1:3:0.44 | 298.15–333.15 | 1.24–0.99 |
Choline chloride/Lactic acid/H2O | 1:5:0.67 | 298.15–333.15 | 1.73–0.99 |
Choline chloride/Lactic acid/H2O | 1:9:1.11 | 298.15–333.15 | 1.61–0.80 |
Choline chloride/Lactic acid/H2O | 1:10:1.22 | 298.15–333.15 | 1.77–1.04 |
Choline chloride/Malic acid/H2O | 1:1:0.22 | 298.15–333.15 | 1.61–0.94 |
Choline chloride/Malic acid/H2O | 2:1:0.33 | 298.15–333.15 | 1.93–1.19 |
Choline chloride/Malonic acid/H2O | 1:1:0.22 | 298.15–333.15 | 1.28–0.41 |
Choline chloride/Oxalic acid/H2O | 1:1:2.44 | 298.15–333.15 | 1.21–0.06 |
Lactic acid/Alanine/H2O | 9:1:1.11 | 298.15–333.15 | 2.15–1.42 |
Lactic acid/Betaine/H2O | 2:1:0.33 | 298.15–333.15 | 2.45–1.85 |
Lactic acid/Glycine/H2O | 2:1:0.33 | 298.15–333.15 | 2.74–2.18 |
Lactic acid/Glycine/H2O | 9:1:1.11 | 298.15–333.15 | 2.27–1.54 |
Malic acid/Sucrose/H2O | 1:1:0.22 | 298.15–333.15 | 2.05–1.35 |
DES-like Mixtures | Molar Ratio | Temperature (K) | pH |
---|---|---|---|
Allyltriphenylphosphonium bromide/Diethylene glykol/H2O | 1:4:0.17 | 293.15–343.15 | 1.49–0.50 |
Allyltriphenylphosphonium bromide/Diethylene glycol/H2O | 1:10:0.31 | 293.15–343.15 | 4.05–3.23 |
Allyltriphenylphosphonium bromide/Diethylene glycol/H2O | 1:16:0.39 | 293.15–343.15 | 4.21–3.34 |
Allyltriphenylphosphonium bromide/Triethylene glycol/H2O | 1:4:0.18 | 293.15–343.15 | 1.40–0.15 |
Allyltriphenylphosphonium bromide/Triethylene glycol/H2O | 1:10:0.35 | 293.15–343.15 | 3.15–1.90 |
Allyltriphenylphosphonium bromide/Triethylene glycol/H2O | 1:16:0.56 | 293.15–343.15 | 3.42–2.47 |
DES-like Mixtures | Molar Ratio | Water Content (%) | pH |
---|---|---|---|
Choline chloride/Lactic acid/H2O | 1:2:0.96 | 5.4 | 1.71 |
Choline chloride/Lactic acid/H2O | 1:3:0.97 | 6.4 | 1.66 |
Choline chloride/Lactic acid/H2O | 1:4:0.99 | 7.1 | 1.64 |
Choline chloride/Lactic acid/H2O | 1:5:0.98 | 7.5 | 1.63 |
Choline chloride/Lactic acid/1,3-Propanediol/H2O | 1:1:1:0.92 | 3.4 | 1.86 |
Choline chloride/Lactic acid/1,3-Propanediol/H2O | 1:2:1:0.95 | 4.8 | 1.85 |
Choline chloride/Lactic acid/1,3-Propanediol/H2O | 1:3:1:0.95 | 5.6 | 1.80 |
Choline chloride/Lactic acid/1,3-Propanediol/H2O | 1:4:1:0.92 | 6.4 | 1.83 |
Choline chloride/Lactic acid/1,3-Propanediol/H2O | 1:5:1:0.91 | 6.8 | 1.80 |
Choline chloride/Lactic acid/1,3-Butanediol/H2O | 1:1:1:0.93 | 2.9 | 2.05 |
Choline chloride/Lactic acid/1,3-Butanediol/H2O | 1:2:1:0.92 | 4.5 | 2.00 |
Choline chloride/Lactic acid/1,3-Butanediol/H2O | 1:3:1:1 | 5.4 | 2.01 |
Choline chloride/Lactic acid/1,3-Butanediol/H2O | 1:4:1:1 | 6.1 | 2.05 |
Choline chloride/Lactic acid/1,3-Butanediol/H2O | 1:5:1:1 | 6.4 | 2.07 |
Choline chloride/Lactic acid/1,4-Butanediol/H2O | 1:1:1:0.96 | 3.0 | 2.31 |
Choline chloride/Lactic acid/1,4-Butanediol/H2O | 1:2:1:0.92 | 4.5 | 2.20 |
Choline chloride/Lactic acid/1,4-Butanediol/H2O | 1:3:1:0.92 | 5.5 | 2.10 |
Choline chloride/Lactic acid/1,4-Butanediol/H2O | 1:4:1:0.91 | 6.2 | 2.10 |
Choline chloride/Lactic acid/1,4-Butanediol/H2O | 1:5:1:0.91 | 6.7 | 2.10 |
Choline chloride/Lactic acid/1,5-Butanediol/H2O | 1:1:1:0.87 | 3.9 | 2.22 |
Choline chloride/Lactic acid/1,5-Butanediol/H2O | 1:2:1:0.98 | 5.2 | 2.18 |
Choline chloride/Lactic acid/1,5-Butanediol/H2O | 1:3:1:0.90 | 5.9 | 2.23 |
Choline chloride/Lactic acid/1,5-Butanediol/H2O | 1:4:1:0.90 | 6.7 | 2.15 |
Choline chloride/Lactic acid/1,5-Butanediol/H2O | 1:5:1:0.96 | 6.9 | 2.13 |
DES-like Mixtures | Molar Ratio | Water Content (wt%) | pH |
---|---|---|---|
Betaine/Citric acid | 1:1 | 30/50 | 2.46 ± 0.04/2.46 ± 0.02 |
Betaine/Ethylene glycol | 1:2 | 30 | 6.86 ± 0.00 |
Betaine/Glucose | 1:1 | 10 | 6.64 ± 0.35 |
Betaine/Glycerol | 1:2 | 30/50 | 6.77 ± 0.04/6.38 ± 0.07 |
Betaine/Oxalic acid/ Glycerol | 1:2:1 | 30 | 2.91 ± 0.05 |
Betaine/Malic acid | 1:1 | 30/50 | 2.98 ± 0.01/2.92 ± 0.01 |
Betaine/Sucrose | 4:1 | 30 | 7.85 ± 0.11 |
Choline chloride/Citric acid | 2:1 | 30/50 | 0.34 ± 0.04/0.71 ± 0.00 |
Choline chloride/Ethylene glycol | 1:2 | 10/30 | 6.19 ± 0.01/6.60 ± 0.57 |
Choline chloride/Ethylene glycol | 1:2 | 50/80 | 4.58 ± 0.14/4.41 ± 0.00 |
Choline chloride/Fructose | 1:1 | 30/50 | 3.51 ± 0.05/3.35 ± 0.03 |
Choline chloride/Glucose | 1:1 | 30/50 | 4.83 ± 0.06/3.56 ± 0.01 |
Choline chloride/Glycerol | 1:2 | 30/50 | 3.71 ± 0.06/2.67 ± 0.11 |
Choline chloride/Glycerol | 1:2 | 80 | 3.06 ± 0.01 |
Choline chloride/Malic acid | 1:1 | 30/50 | 0.63 ± 0.01/1.03 ± 0.00 |
Choline chloride/ Proline/Malic acid | 1:1:1 | 10/30 | 3.23 ± 0.00/2.82 ± 0.01 |
Choline chloride/ Proline/Malic acid | 1:1:1 | 50 | 2.63 ± 0.03 |
Choline chloride/Sorbitol | 1:1 | 50/80 | 4.92 ± 0.04/3.80 ± 0.08 |
Choline chloride/Urea | 1:2 | 10/30 | 9.26 ± 0.08/8.85 ± 0.06 |
Choline chloride/Urea | 1:2 | 50 | 8.23 ± 0.04 |
Choline chloride/ Urea/Ethylene glycol | 1:2:2 | 10 | 8.29 ± 0.07 |
Choline chloride/Glycerol | 1:2:2 | 10 | 8.72 ± 0.05 |
Choline chloride/Xylose | 2:1 | 30/50 | 2.86 ± 0.04/3.32 ± 0.03 |
Choline chloride/Xylose | 2:1 | 80 | 3.93 ± 0.01 |
Choline chloride/Xylitol | 5:2 | 30/50 | 6.90 ± 0.06/6.50 ± 0.01 |
Choline chloride/Xylitol | 5:2 | 80 | 6.03 ± 0.06 |
Choline chloride/Fructose | 1:1 | 30/50 | 3.51 ± 0.05/3.35 ± 0.03 |
Citric acid/Glucose | 1:1 | 30 | 0.53 ± 0.04 |
Citric acid/Sucrose | 1:1 | 30 | 0.83 ± 0.00 |
Fructose/Ethylene glycol | 1:2 | 30 | 5.31 ± 0.09 |
Fructose/Glucose/Ethylene glycol | 1:1:2 | 50 | 3.67 ± 0.06 |
Fructose/Glucose/Sucrose | 1:1:1 | 50/80 | 2.63 ± 0.03/2.99 ± 0.01 |
Fructose/Glucose/Urea | 1:1 | 30 | 8.22 ± 0.06 |
Glucose/Ethylene glycol | 1:2 | 50 | 4.03 ± 0.02 |
Glucose/Glycerol | 1:2 | 50 | 4.33 ± 0.04 |
Malic acid/Fructose | 1:1 | 30 | 0.77 ± 0.01 |
Malic acid/ Fructose/Glycerol | 1:1:1 | 30 | 2.77 ± 0.01 |
Malic acid/Glucose | 1:1 | 30 | 0.83 ± 0.01 |
Malic acid/ Glucose/Glycerol | 1:1:1 | 10 | 0.92 ± 0.00 |
Malic acid/Sucrose | 2:1 | 30 | 0.66 ± 0.01 |
Proline/Malic acid | 1:1 | 10/30 | 2.63 ± 0.01/2.78 ± 0.02 |
Proline/Malic acid | 1:1 | 50 | 2.73 ± 0.03 |
Sucrose/Ethylene glycol | 1:2 | 30 | 6.05 ± 0.06 |
Sucrose/Glucose/Urea | 1:1 | 30 | 8.14 ± 0.25 |
Xylose/Ethylene glycol | 1:2 | 30 | 4.57 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jančíková, V.; Jablonský, M.; Voleková, K.; Šurina, I. Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review. Energies 2022, 15, 9333. https://doi.org/10.3390/en15249333
Jančíková V, Jablonský M, Voleková K, Šurina I. Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review. Energies. 2022; 15(24):9333. https://doi.org/10.3390/en15249333
Chicago/Turabian StyleJančíková, Veronika, Michal Jablonský, Katarína Voleková, and Igor Šurina. 2022. "Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review" Energies 15, no. 24: 9333. https://doi.org/10.3390/en15249333
APA StyleJančíková, V., Jablonský, M., Voleková, K., & Šurina, I. (2022). Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review. Energies, 15(24), 9333. https://doi.org/10.3390/en15249333