Porcellio scaber Latr. and Lumbricus terrestris L.—PAHs Content and Remediation of Long-Term Aging Soil Contamination with Petroleum Products during a Single- and Two-Species Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analysis of the Concentration of Petroleum-Derived Compounds in the Soil
2.2.1. Determination of Dry Soil Matter
2.2.2. Determining Total Petroleum Hydrocarbons Content (TPH) in Soil Samples
2.3. Analysis of PAHs Content in Animal Tissues
2.4. Statistical Analysis
3. Results
3.1. Survival and Body Mass Gain
3.1.1. Lumbricus terrestris L.—Single-Species Experiment
3.1.2. Lumbricus terrestris L. and Porcellio scaber Latr.—Two-Species Experiment
3.2. TPH Content in Soil
3.2.1. Lumbricus terrestris L.—Single-Species Experiment
3.2.2. Lumbricus terrestris L. and Porcellio scaber Latr.—Two-Species Experiment
3.3. PAHs Concentration in Animals Bodies
3.3.1. Lumbricus terrestris L.—Single-Species Experiment
3.3.2. Lumbricus terrestris L. and Porcellio scaber Latr.—Two-Species Experiment
4. Discussion
4.1. Survival and Body Mass Gain
4.2. TPH Content in Soil
4.3. PAH Concentration in Animals Bodies
5. Conclusions
- Survival of earthworms cultivated separately (single-species experiment) in soil contaminated with DF 12 months earlier significantly decreased (85% mortality after 4 weeks), while body mass gain was not significantly changed under the influence of tested PPs;
- Breeding of L. terrestris together with P. scaber contributed to significant mortality of earthworms regardless of treatments, while woodlice showed much greater resistance to PPs (only EO caused a significant reduction in survival of P. scaber after 3 and 4 weeks of exposure to 53% and 36%, respectively);
- The presence of L. terrestris for 4 weeks in soil contaminated with DF and EO 12 months earlier resulted in reductions in TPH of 21% and 9%, respectively (the differences, however, were not statistically significant). Changes in TPH content in soil contaminated with P were similar to that in control soil;
- Breeding of L. terrestris together with P. scaber in soil contaminated 24 months earlier with EO resulted in a significant reduction in TPH content after 4 weeks (by 29% compared to the initial soil);
- During the conducted experiments, the tested animals showed a tendency towards bioaccumulation of polycyclic aromatic hydrocarbons rather than their biodegradation. The content of PAHs in the tissues of L. terrestris was higher than in P. scaber. The highest amounts of PAHs accumulated in the earthworm’s tissues were found when animals were exposed to EO;
- Use of L. terrestris together with P. scaber can be considered a promising scenario for increasing the effectiveness of remediation of soils contaminated with petroleum products, especially EO. However, further research is necessary to establish conditions preventing excessive mortality of earthworms in such a layout.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Claxton, L.D. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: Diesel and gasoline. Mutat. Res. 2015, 763, 30–85. [Google Scholar] [CrossRef] [PubMed]
- Szulińska, E.; Zakrzewski, D.; Kafel, A.; Gospodarek, J.; Rozpędek, K.; Zawisza-Raszka, A. Level of oxidative stress for the land snail Cepaea nemoralis from aged and bioremediated soil contaminated with petroleum products. Environ. Sci Poll. Res. 2022. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Filser, J. The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Appl. Soil Ecol. 2007, 36, 53–62. [Google Scholar] [CrossRef]
- Tejada, M.; Masciandaro, G. Application of organic waste on a benzo[a]pyrene polluted soil. Response of soil biochemical properties and role of Eisenia fetida. Ecotox. Environ. Safe. 2011, 74, 668–674. [Google Scholar] [CrossRef]
- Pasmionka, I.B.; Bulski, K.; Boliglowa, E. The participation of microbiota in the transformation of nitrogen compounds in the soil-a review. Agronomy 2021, 11, 977. [Google Scholar] [CrossRef]
- Van Wensem, J.; Verhoef, H.A.; Van Straalen, N.M. Litter degradation stage as a prime factor for isopod interaction with mineralization processes. Soil Biol. Biochem. 1993, 25, 1175–1183. [Google Scholar] [CrossRef]
- Zimmer, M.; Topp, W. Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J. Chem. Ecol. 1998, 24, 1397–1408. [Google Scholar] [CrossRef]
- Kautz, G.; Topp, W. Acquisition of microbial communities and enhanced availability of soil nutrients by the isopod Porcellio scaber (Latr.) (Isopoda: Oniscidea). Biol. Fert. Soils 2000, 31, 102–107. [Google Scholar] [CrossRef]
- Zimmer, M. Surfactants in the gut fluids of Porcellio scaber (Isopoda: Oniscidea), and their interactions with phenolics. J. Insect Physiol. 1997, 43, 1009–1014. [Google Scholar] [CrossRef]
- Delhoumi, M.; Catania, V.; Zaabar, W.; Tolone, M.; Quatrini, P.; Achouri, M.S. The gut microbiota structure of the terrestrial isopod Porcellionides pruinosus (Isopoda: Oniscidea). Eur. Zool. J. 2020, 87, 357–368. [Google Scholar] [CrossRef]
- Zimmer, M.; Kautz, G.; Topp, W. Olfaction in terrestrial isopods (Crustacea: Oniscidea): Responses of Porcellio scaber to the odour of litter. Eur. J. Soil Biol. 1996, 32, 141–147. [Google Scholar]
- Gospodarek, J.; Petryszak, P.; Koloczek, H.; Rusin, M. The effect of soil pollution with petroleum-derived substances on Porcellio scaber Latr. (Crustacea, Isopoda). Environ. Monit. Assess. 2019, 191, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinkosky, L.; Barkley, J.; Sabadell, G.; Gough, H.; Davidson, S. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Sci. Total Environ. 2017, 580, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, M. Vermiremediation strategy for remediation of Kuwaiti oil contaminated soil. SN Appl. Sci. 2019, 1, 1312. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.V.; Chu, A.; Goodman, R.H. Leachability and toxicity of hydrocarbons, metals and salt contamination from flare pit soil. Wat. Air Soil Poll. 2002, 133, 297–314. [Google Scholar] [CrossRef]
- ISO-11268-1:2012; Soil Quality-Effects of Pollutants on Earthworms. Part 1: Determination of Acute Toxicity to Eisenia fetida/Eisenia andrei. International Standard Organization (ISO): Geneva, Switzerland, 2012; 2nd ed.
- Calisi, A.; Lionetto, M.G.; De Lorenzis, E.; Leomanni, A.; Schettino, T. Metallothionein induction in the coelomic fluid of the earthworm Lumbricus terrestris following heavy metal exposure: A short report. Biom. Res. Int. 2014. online ahead of print. [Google Scholar] [CrossRef] [Green Version]
- Calisi, A.; Zaccarelli, N.; Lionetto, M.G.; Schettino, T. Integrated biomarker analysis in the earthworm Lumbricus terrestris: Application to the monitoring of soil heavy metal pollution. Chemosphere 2013, 90, 2637–2644. [Google Scholar] [CrossRef]
- Gospodarek, J. Survival rate of redworms and woodlice in soil contamined with petrol, diesel oil and engine oil. Ecol. Chem. Eng. A 2012, 19, 1369–1374. [Google Scholar] [CrossRef]
- Stroomberg, G.J.; Ariese, F.; van Gestel, C.A.M.; van Hattum, N.H.; Velthorst, N.H.; van Straalen, N.M. Pyrene biotransformation products as biomarkers of polycyclic aromatic hydrocarbon exposure in terrestrial Isopoda: Concentration-response relationship, and field study in a contaminated forest. Environ. Toxicol. Chem. 2003, 22, 224–231. [Google Scholar]
- Stroomberg, G.J.; Ariese, F.; van Gestel, C.A.M.; van Hattum, N.H.; Velthorst, N.H.; van Straalen, N.M. Pyrene biotransformation and kinetics in the hepatopancreas of the isopod Porcellio scaber. Arch. Environ. Contam. Toxicol. 2004, 47, 324–331. [Google Scholar] [CrossRef]
- Stroomberg, G.J.; Zappey, H.; Steen, R.J.C.A.; van Gestel, C.A.M.; Ariese, F.; Velthorst, N.H.; van Straalen, N.M. PAH biotransformation in terrestrial invertebrates—A new phase II metabolite in isopods and springtails. Comp. Biochem. Physiol. C 2004, 138, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Luthe, G.; Stroomberg, G.J.; Ariese, F.; Brinkham, U.A.T.; Van Straalen, N.M. Metabolism of 1-fluoropyrene nad pyrene in marine flatfish and terrestrial ispods. Environ. Toxicol. Pharmacol. 2002, 12, 221–229. [Google Scholar] [CrossRef]
- Kampe, S.; Schlechtriem, C. Bioaccumulation of hexachlorobenzene in the terrestrial isopod Porcellio scaber. Environ. Toxicol. Chem. 2016, 35, 2867–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, M.; Wilcke, W.; Zech, W. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environ. Sci. Technol. 2000, 34, 4335–4340. [Google Scholar] [CrossRef]
- Parrish, Z.D.; White, J.C.; Isleyen, M.; Gent, M.P.N.; Iannucci-Berger, W.; Eitzer, B.D.; Kelsey, J.W.; Mattina, M.I. Accumulation of weathered Polycyclic Aromatic Hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 2006, 64, 609–618. [Google Scholar] [CrossRef]
- Shelton, M.; Chapman, P.J.; Foss, S.S.; Fisher, W.W. Degradation of weathered oil by mixed marine bacteria and the toxicity of accumulated water-soluble material to two marine Crustacea. Arch. Environ. Con. Tox. 1999, 36, 13–20. [Google Scholar] [CrossRef]
- Chaineau, C.; Yepremian, C.; Vidalie, J.; Ducreux, J.; Ballerini, D. Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water Air Soil Pollut. 2003, 144, 419–440. [Google Scholar] [CrossRef]
- Van Hamme, J.D.; Singh, A.; Ward, O.P. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. R. 2003, 67, 503–549. [Google Scholar] [CrossRef] [Green Version]
- Njoku, K.L.; Nomba, E.U.; Olatunde, A.M. Vermiremediation of crude oil contaminated soil using Eudrillus euginae and Lumbricus terrestris. J. Biol. Environ. Sci. 2017, 11, 43–50. [Google Scholar]
- Ekperusi, O.A.; Aigbodion, F.I. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 2015, 5, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Diaz, M.C.; Vazquez-Luna, D.; Martinez-Hernandez, S.; Guzman-Lopez, O.; Ortiz-Ceballos, A.I. Sensitivity of the endogeic tropical earthworm Pontoscolex corethrurus to the presence of heavy crude oil. Bull. Environ. Contam. Toxicol. 2017, 99, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.D.; Pro, J.; Alonso, C.; Aragonese, P.; Tarazona, J.V. Terrestrial microcosms in a feasibility study on the remediation of diesel-contaminated soils. Ecotox. Environ. Safe. 2011, 74, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.B.; Zhang, J.J.; Wang, Z.H.; Zhang, Y.X. Correlations between emulsification behaviors of crude oil-water systems and crude oil compositions. J. Petrol. Sci. Eng. 2016, 146, 1–9. [Google Scholar] [CrossRef]
- Michel, J.; Fingas, M. Oil Spills: Causes, consequences, prevention, and countermeasures. In Fossil Fuels: Current Status and Future Directions; World Scientific Publishing Company: Hackensack, NJ, USA, 2016; pp. 159–201. ISBN 9789814699983. [Google Scholar]
- Gospodarek, J.; Petryszak, P.; Koloczek, H. The effect of the bioremediation of soil contaminated with petroleum derivatives on the occurrence of epigeic and edaphic fauna. Biorem. J. 2016, 20, 38–53. [Google Scholar] [CrossRef]
- PN-C-04573-01:1986; Determination of the Total Content of Organic Substances Extractable with Petroleum Ether by Weight Method. Polish Standardization Committee: Warsaw, Poland, 1986. (In Polish)
- Schaefer, M.; Petersen, S.O.; Filser, J. Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community dynamics in oil-contaminated soil. Soil Biol. Biochem. 2005, 37, 2065–2076. [Google Scholar] [CrossRef]
- Lowe, C.N.; Butt, K.R. Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. Eur. J. Soil Biol. 2007, 43, 281–288. [Google Scholar] [CrossRef]
- Hanna, S.H.S.; Weaver, R.W. Earthworm survival in oil contaminated soil. Plant Soil 2002, 240, 127–132. [Google Scholar] [CrossRef]
- Gainer, A.; Cousins, M.; Hogan, N.; Siciliano, S.D. Petroleum hydrocarbon mixture toxicity and a trait-based approach to soil invertebrate species for site-specific risk assessments. Environ. Toxicol. Chem. 2018, 37, 2222–2234. [Google Scholar] [CrossRef]
- Chachina, S.B.; Voronkova, N.A.; Baklanova, O.N. Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida. Oil Gas Eng. 2016, 152, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Ekperusi, O.A.; Aigbodion, I.F. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. SpringerPlus 2015, 4, 540. [Google Scholar] [CrossRef] [Green Version]
- Ebere, A.G.; Akintonwa, A. Acute toxicity studies with earthworms, Lumbricus terrestris. Bull. Environ. Contam. Toxicol. 1995, 55, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Van Brummelen, T.C.; Stuijfzand, S.C. Effects of benzo[a]pyrene on survival, growth, and energy reserves in the terrestrial isopods Oniscus asellus and Porcellio scaber. Sci. Total Environ. 1993, 134 (Suppl. S2), 921–930. [Google Scholar] [CrossRef]
- Faulkner, B.C.; Lochmiller, R.L. Increased abundance of terrestrial isopod populations in terrestrial ecosystems contaminated with petrochemical wastes. Arch. Environ. Contam. Toxicol. 2000, 39, 86–90. [Google Scholar] [CrossRef]
- Ameh, A.O.; Mohammed-Dabo, I.A.; Ibrahim, S.; Ameh, J.B.; Tanimu, Y.; Bello, T.K. Effect of earthworm inoculation on the bioremediation of used engine oil contaminated soil. Int. J. Biol. Chem. Sci. 2012, 6, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Nassar, S.E.; Said, R.M. Bioremediation assessment, hematological, and biochemical responses of the earthworm (Allolobophora caliginosa) in soil contaminated with crude oil. Environ. Sci. Pollut. Res. 2021, 28, 54565–54574. [Google Scholar] [CrossRef] [PubMed]
- Van Straalen, N.M.; Verweij, R.A. Effects of benzo[a]pyrene on food assimilation and growth efficiency in Porcellio scaber (Isopoda). Bull. Environ. Contam. Toxicol. 1991, 46, 134–140. [Google Scholar] [CrossRef]
- Van Brummelen, T.C.; Verweij, R.A.; Wedzinga, S.A.; Van Gestel, C.A.M. Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 1996, 32, 315–341. [Google Scholar] [CrossRef]
- Stroomberg, G.J.; Reuther, C.; Kozin, I.; Van Brummelen, T.C.; Van Gestel, C.A.M.; Gooijer, C.; Cofino, W.P. Formation of pyrene metabolites by the terrestrial isopod Porcellio scaber. Chemosphere 1996, 33, 1905–1914. [Google Scholar] [CrossRef]
- Brown, S.A.; McKelvie, J.R.; Simpson, A.J.; Simpson, M.J. 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil. Environ. Pollut. 2010, 158, 2117–2123. [Google Scholar] [CrossRef]
- McKelvie, J.R.; Wolfe, D.M.; Celejewski, M.; Simpson, A.J.; Simpson, M.J. Correlations of Eisenia fetida metabolic responses to extractable phenanthrene concentrations through time. Environ. Pollut. 2010, 158, 2150–2157. [Google Scholar] [CrossRef]
- Contreras-Ramos, S.M.; Alvarez-Bernal, D.; Dendooven, L. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ. Pollut. 2006, 141, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Eyles, J.L.; Sizmur, T.; Collins, C.D.; Hodson, M.E. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 2011, 159, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Cachada, A.; Coelho, C.; Gavina, A.; Dias, A.C.; Patinha, C.; Reis, A.P.; Ferreira da Silva, E.; Duarte, A.C.; Pereira, R. Availability of polycyclic aromatic hydrocarbons to earthworms in urban soils and its implications for risk assessment. Chemosphere 2018, 191, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Knox, O.; Juhasz, A.; Wilson, S.C. Differential accumulation of polycyclic aromatic hydrocarbons (PAHs) in three earthworm ecotypes: Implications for exposure assessment on historically contaminated soils. Environ. Adv. 2022, 7, 100175. [Google Scholar] [CrossRef]
- Van Brummelen, T.C.; Van Straalen, N.M. Uptake and elimination of benzo[a]pyrene in the terrestrial isopod Porcellio scaber. Arch. Environ. Contam. Toxicol. 1996, 31, 277–285. [Google Scholar] [CrossRef]
Compound Name | TR [min] | Selected Ions Monitoring [m/z] |
---|---|---|
acenaphthylene | 31.882 | 63, 75, 76, 126, 150, 151, 152, 153, 154, |
fluorene | 35.253 | 63, 82, 139, 163, 164, 165, 166, 167, |
phenanthrene | 40.020 | 76, 88, 89, 150, 151, 152, 176, 177, 178, 179, |
anthracene | 40.282 | 76, 88, 89, 150, 151, 152, 176, 177, 178, 179, |
pyrene | 47.244 | 88, 100, 101, 198, 199, 200, 201, 202, 203, |
benzo[a]anthracene | 53.418 | 100, 101, 112, 113, 114, 224, 226, 227, 228, 229, |
chrysene | 53.638 | 114, 200, 202, 224, 225, 226, 227, 228, 229, |
benzo[b]fluoranthene | 58.699 | 113, 124, 125, 126, 213, 248, 250, 251, 252, 253, |
benzo[k]fluoranthene | 58.867 | 112, 113, 124, 125, 126, 248, 250, 251, 252, 253, |
benzo[a]pyrene | 60.306 | 112, 113, 124, 125, 126, 248, 250, 251, 252, 253, |
dibenzo[ah]anthracene | 66.100 | 125, 137, 138, 139, 274, 276, 277, 278, 279, |
benzo[ghi]perylene | 67.645 | 124, 125, 136, 137, 138, 274, 275, 276, 277, |
1-methylchrysene | IS | 119, 120, 121, 226, 239, 240, 241, 242, 243, |
P | DF | EO | ||||
---|---|---|---|---|---|---|
2 | 4 | 2 | 4 | 2 | 4 | |
acenaphthylene | nd | 0.01 ± 0.01 a * | nd | - | nd | 0.05 ± 0.01 a |
fluorene | 0.10 ± 0.02 a | 0.22 ± 0.01 a | 0.44 ± 0.02 b | - | 0.04 ± 0.01 a | 1.27 ± 0.11 c |
phenanthrene | 0.06 ± 0.01 a | nd | 0.16 ± 0.01 a | - | 0.16 ± 0.01 a | 1.11 ± 0.09 b |
anthracene | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.26 ± 0.02 b | - | 0.11 ± 0.01 a | 2.17 ± 0.07 c |
pyrene | 0.01 ± 0.01 a | 0.11 ± 0.01 b | nd | - | 0.01 ± 0.01 a | 0.20 ± 0.01 c |
benzo[a]anthracene | 0.06 ± 0.01 bc | 0.07 ± 0.01 c | 0.01 ± 0.01 a | - | 0.04 ± 0.01 ab | 0.12 ± 0.01 d |
chrysene | nd | 0.06 ± 0.01 a | nd | - | nd | 0.10 ± 0.01 a |
benzo[b]fluoranthene | nd | 1.26 ± 0.08 a | nd | - | nd | 5.10 ± 0.21 b |
benzo[k]fluoranthene | 0.66 ± 0.05 c | 0.61 ± 0.02 c | 0.42 ± 0.03 b | - | 0.11 ± 0.01 a | nd |
benzo[a]pyrene | nd | 0.35 ± 0.02 b | nd | - | nd | 0.12 ± 0.01 a |
dibenzo[ah]anthracene | nd | nd | nd | - | nd | nd |
benzo[ghi]perylene | nd | 0.05 ± 0.01 a | nd | - | 0.01 ± 0.01 a | 0.23 ± 0.01 b |
P | DF | EO | ||||
---|---|---|---|---|---|---|
2 | 4 | 2 | 4 | 2 | 4 | |
acenaphthylene | 0.03 ± 0.01 a * | 0.01 ± 0.01 a | nd | 0.22 ± 0.01 c | 0.09 ± 0.01 b | 0.21 ± 0.01 c |
fluorene | 0.07 ± 0.01 a | 0.04 ± 0.01 a | 0.09 ± 0.01 a | 0.35 ± 0.03 c | 0.20 ± 0.02 b | 0.22 ± 0.02 b |
phenanthrene | 0.07 ± 0.01 a | 0.04 ± 0.01 a | nd | 0.05 ± 0.01 a | 0.12 ± 0.01 b | 0.29 ± 0.01 c |
anthracene | 0.10 ± 0.01 ab | 0.06 ± 0.01 a | 0.09 ± 0.01 ab | 0.23 ± 0.02 c | 0.12 ± 0.01 b | 0.27 ± 0.02 d |
pyrene | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.04 ± 0.01 ab | 0.08 ± 0.01 c | 0.07 ± 0.01 bc | 0.15 ± 0.01 d |
benzo[a]anthracene | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.06 ± 0.01 a | 0.10 ± 0.01 a |
chrysene | 0.01 ± 0.01 a | 0.03 ± 0.01 a | nd | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.10 ± 0.01 a |
benzo[b]fluoranthene | nd | 0.07 ± 0.01 a | nd | 0.48 ± 0.03 b | nd | 0.15 ± 0.02 a |
benzo[k]fluoranthene | 0.70 ± 0.03 cd | 0.54 ± 0.04 b | 0.21 ± 0.02 a | 0.60 ± 0.04 bc | 0.75 ± 0.05 d | 1.32 ± 0.10 a |
benzo[a]pyrene | 0.12 ± 0.01 a | 0.18 ± 0.01 a | 0.24 ± 0.02 a | 0.55 ± 0.03 c | nd | 0.80 ± 0.06 d |
dibenzo[ah]anthracene | nd | 0.01 ± 0.01 a | nd | 0.03 ± 0.01 a | 0.01 ± 0.01 a | 0.04 ± 0.01 a |
benzo[ghi]perylene | 0.18 ± 0.02 c | 0.10 ± 0.01 b | 0.07 ± 0.01 ab | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.16 ± 0.01 c |
P | DF | EO | |
---|---|---|---|
acenaphthylene | nd | nd | nd |
fluorene | 0.030 ± 0.01 | nd | nd |
phenanthrene | nd | nd | nd |
anthracene | 0.281 ± 0.02 | nd | nd |
pyrene | nd | nd | 0.562 ± 0.01 |
benzo[a]anthracene | nd | nd | 0.177 ± 0.02 |
chrysene | 0.027 ± 0.01 a * | nd | 0.208 ± 0.01 a |
benzo[b]fluoranthene | nd | nd | nd |
benzo[k]fluoranthene | nd | nd | nd |
benzo[a]pyrene | nd | nd | nd |
dibenzo[ah]anthracene | 0.085 ± 0.02 a | nd | 0.072 ± 0.01 a |
benzo[ghi]perylene | nd | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gospodarek, J.; Petryszak, P.; Kafel, A.; Paśmionka, I.B. Porcellio scaber Latr. and Lumbricus terrestris L.—PAHs Content and Remediation of Long-Term Aging Soil Contamination with Petroleum Products during a Single- and Two-Species Experiment. Energies 2022, 15, 7835. https://doi.org/10.3390/en15217835
Gospodarek J, Petryszak P, Kafel A, Paśmionka IB. Porcellio scaber Latr. and Lumbricus terrestris L.—PAHs Content and Remediation of Long-Term Aging Soil Contamination with Petroleum Products during a Single- and Two-Species Experiment. Energies. 2022; 15(21):7835. https://doi.org/10.3390/en15217835
Chicago/Turabian StyleGospodarek, Janina, Przemysław Petryszak, Alina Kafel, and Iwona B. Paśmionka. 2022. "Porcellio scaber Latr. and Lumbricus terrestris L.—PAHs Content and Remediation of Long-Term Aging Soil Contamination with Petroleum Products during a Single- and Two-Species Experiment" Energies 15, no. 21: 7835. https://doi.org/10.3390/en15217835
APA StyleGospodarek, J., Petryszak, P., Kafel, A., & Paśmionka, I. B. (2022). Porcellio scaber Latr. and Lumbricus terrestris L.—PAHs Content and Remediation of Long-Term Aging Soil Contamination with Petroleum Products during a Single- and Two-Species Experiment. Energies, 15(21), 7835. https://doi.org/10.3390/en15217835