Fiber-Optic Gyroscope Thermal Calibration through Two-Dimensional N-Order Polynomial for Landslide Displacement Monitoring
Abstract
:1. Introduction
1.1. Monitoring Principle Based on the Inertial Measurement System
1.2. Methods of Thermal Calibration
2. Thermal Calibration Experiment
3. Thermal Calibration Based on Two-Dimensional N-Order Polynomial (TDNP)
3.1. TDNP Calibration Algorithm
3.2. Results and Discussion of the TDNP Method
4. Thermal Calibration Based on Artificial Neural Network (ANN)
5. Discussion of Thermal Calibration Methods and Field Test
5.1. Discussion of Thermal Calibration Methods
5.2. Field Test
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Tang, H.; Lu, G.; Wang, Y.; Li, C.; Zhang, J.; An, P.; Shen, P. Design and Testing of Inertial System for Landslide Displacement Distribution Measurement. Sensors 2020, 20, 7154. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, H.; Zhang, Y.; Du, S.; Liu, P.; Yang, H. Cooperation of quadruple cylinder-wound coil and insulation cavities for suppressing the thermal-induced bias drift of FOG. Opt. Commun. 2020, 476, 1–8. [Google Scholar] [CrossRef]
- Kurbatov, A.M.; Kurbatov, R.A. Temperature characteristics of fiber-optic gyroscope sensing coils. J. Commun. Technol. Electron. 2013, 58, 745–752. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Xu, T. Bias error and its thermal drift due to fiber birefringence in interferometric fiber-optic gyroscopes. Opt. Fiber Technol. 2020, 55, 102138. [Google Scholar] [CrossRef]
- Zhang, B.; Chu, H.; Sun, T.; Guo, L. Thermal calibration of a tri-axial MEMS gyroscope based on Parameter-Interpolation method. Sens. Actuators A Phys. 2017, 261, 103–116. [Google Scholar] [CrossRef]
- Jin, J.; Song, N.; Li, L. Temperature Drift Modeling and Rea-l time Compensation of Interferometric Fiber Optic Gyroscope. Acta Aeronaut. Et Astronaut. Sin. 2007, 28, 1450–1454. [Google Scholar]
- Akimov, P.A.; Matasov, A.I. Estimation of Biases in Gyro Drifts by Means of l1-norm Approximation. IFAC Proc. Vol. 2012, 45, 442–447. [Google Scholar] [CrossRef]
- Gulmammadov, F. Analysis, modeling and compensation of bias drift in MEMS inertial sensors. In Proceedings of the IEEE 2009 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 11–13 June 2009; pp. 591–596. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.; Yuan, Y.; Han, Y.; Tian, X. Compensation of FOG temperature drift based on LS-SVM modeling. In Proceedings of the IEEE 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 5515–5518. [Google Scholar] [CrossRef]
- Bhatt, D.; Aggarwal, P.; Bhattacharya, P.; Devabhaktuni, V. An enhanced MEMS error modeling approach based on nu-support vector regression. Sensors 2012, 12, 9448–9466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, R.; Chen, X.; Tang, C. Study on temperature drift modeling and compensation of FOG based on AFSA optimizing LS-SVM. In Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 538–542. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Li, S. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias. J. Beijing Univ. Aeronaut. Astronaut. 2014, 40, 235–239. [Google Scholar]
- Song, L.; Zhang, W. Temperature error compensation for open-loop fiber optical gyro using back-propagation neural networks with optimal structure. In Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 303–308. [Google Scholar] [CrossRef]
- Fontanella, R.; Accardo, D.; Moriello, R.S.L.; Angrisani, L.; de Simone, D. MEMS gyros temperature calibration through artificial neural networks. Sens. Actuators A Phys. 2018, 279, 553–565. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X. Modeling and compensation method of FOG temperature drift based on multi-scale and improved support vector machine. J. Chin. Inert. Technol. 2016, 24, 793–797. [Google Scholar]
- Grigorie, T.L.; Botez, R.M.; Lungu, M.; Edu, R.I.; Obreja, R. Micro-Electromechanical systems gyro performance improvement through bias correction over temperature using an adaptive neural network-trained fuzzy inference system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2012, 226, 1121–1138. [Google Scholar] [CrossRef]
- Nez, A.; Fradet, L.; Laguillaumie, P.; Monnet, T.; Lacouture, P. Simple and efficient thermal calibration for MEMS gyroscopes. Med. Eng. Phys. 2018, 55, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, Y.; Bao, Q. A novel intelligent strategy for improving measurement precision of FOG. IEEE Trans. Instrum. Meas. 2000, 49, 1183–1188. [Google Scholar] [CrossRef]
- Secer, G.; Barshan, B. Improvements in deterministic error modeling and calibration of inertial sensors and magnetometers. Sens. Actuators A Phys. 2016, 247, 522–538. [Google Scholar] [CrossRef]
- Niu, X.; Li, Y.; Zhang, H.; Wang, Q.; Ban, Y. Fast thermal calibration of low-grade inertial sensors and inertial measurement units. Sensors 2013, 13, 12192–12217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Ribeiro, M.V.; Duque, C.A.; Romano, J.M.T. An interconnected type-1 fuzzy algorithm for impulsive noise cancellation in multicarrier-based power line communication systems. IEEE J. Sel. Areas Commun. 2006, 24, 1364–1376. [Google Scholar] [CrossRef]
- Xu, M.; Zeng, G.M.; Xu, X.Y.; Huang, G.H.; Sun, W.; Jiang, X.Y. Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting lake. J. Environ. Sci. 2005, 17, 946–952. [Google Scholar]
Calibration Method | Mean Absolute Error (deg/s) at Different Temperature (°C) | |||||
---|---|---|---|---|---|---|
−10 | 10 | 25 | 45 | 55 | 28 | |
TDNP with order 2 | 0.011373 | 0.011447 | 0.012076 | 0.01003 | 0.010347 | 0.012687 |
TDNP with order 3 | 0.000743 | 0.002532 | 0.002108 | 0.004028 | 0.00264 | 0.005805 |
TDNP with order 4 | 0.00034 | 0.001882 | 0.001163 | 0.000709 | 0.000589 | 0.002796 |
TDNP with order 5 | 0.000889 | 0.001114 | 0.000915 | 0.000462 | 0.000974 | 0.001188 |
LM neural network | 0.001082 | 0.002558 | 0.001082 | 0.003173 | 0.004114 | 0.001792 |
Non-calibration | 0.223736 | 0.095983 | 0.016316 | 0.192403 | 0.290746 | 0.010637 |
Calibration Method | Mean Absolute Error (deg/s) at Different Temperature (°C) | |||||
---|---|---|---|---|---|---|
−10 | 10 | 25 | 45 | 55 | 28 | |
TDNP with order 2 | 0.011686 | 0.016497 | 0.010989 | 0.01013 | 0.008835 | 0.021398 |
TDNP with order 3 | 0.002712 | 0.008964 | 0.001602 | 0.008816 | 0.004879 | 0.016571 |
TDNP with order 4 | 0.001196 | 0.000226 | 0.008231 | 0.001189 | 0.000319 | 0.010137 |
TDNP with order 5 | 0.002548 | 0.002247 | 0.002027 | 0.000254 | 0.002102 | 0.001769 |
LM neural network | 0.006423 | 0.021577 | 0.003437 | 0.005033 | 0.007666 | 0.016903 |
Non-calibration | 0.20987 | 0.079078 | 0.013834 | 0.172659 | 0.27238 | 0.025315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Tang, H.; Zhu, Y.; Zhang, Y.; Xu, H. Fiber-Optic Gyroscope Thermal Calibration through Two-Dimensional N-Order Polynomial for Landslide Displacement Monitoring. Energies 2022, 15, 7845. https://doi.org/10.3390/en15217845
Lu G, Tang H, Zhu Y, Zhang Y, Xu H. Fiber-Optic Gyroscope Thermal Calibration through Two-Dimensional N-Order Polynomial for Landslide Displacement Monitoring. Energies. 2022; 15(21):7845. https://doi.org/10.3390/en15217845
Chicago/Turabian StyleLu, Guiying, Huiming Tang, Yu Zhu, Yongquan Zhang, and Haifeng Xu. 2022. "Fiber-Optic Gyroscope Thermal Calibration through Two-Dimensional N-Order Polynomial for Landslide Displacement Monitoring" Energies 15, no. 21: 7845. https://doi.org/10.3390/en15217845
APA StyleLu, G., Tang, H., Zhu, Y., Zhang, Y., & Xu, H. (2022). Fiber-Optic Gyroscope Thermal Calibration through Two-Dimensional N-Order Polynomial for Landslide Displacement Monitoring. Energies, 15(21), 7845. https://doi.org/10.3390/en15217845