Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas
Abstract
:1. Introduction
2. Background
2.1. Motivation for Heat Pump Use in Poland
2.2. Heat Pump Installation in Poland
3. Materials and Methods
Data
4. Results
4.1. The Municipality of Ruda Huta Efforts to Use RES
4.2. Technical Characteristics of Buildings Using Heat Pumps
4.3. Reduction in Heating Energy Expenditure
- average prices for the period 2013–2022,
- maximum prices for the period 2013–2022,
- forecasts of average prices in the period 2022–2032.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy on Heating and Cooling; European Commission: Brussels, Belgium, 2016.
- Toleikyte, A.; Carlsson, J. Assessment of Heating and Cooling Related Chapters of the National Energy and Climate Plans (NECPs); JRC Technical Report; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- SHARES 2020 Summary Results—Provisional. Available online: https://ec.europa.eu/eurostat/web/energy/data/shares (accessed on 10 November 2021).
- United Nations. Adoption of the Paris Agreement. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 10 May 2021).
- European Commission. Clean Energy for All Europeans; Publications of the European Union: Luxembourg, 2019.
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018.
- European Union. Directive 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, L 156, 75–91. [Google Scholar]
- European Union. Directive 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, L 328, 210–230. [Google Scholar]
- European Union. Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast). Off. J. Eur. Union 2018, L 328, 82–209. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Europe that Protects: Clean Air for All; European Commission: Brussels, Belgium, 2018.
- European Environment Agency. Air Quality in Europe 2021; Report no. 15/2021; European Environment Agency: Copenhagen, Denmark, 2021. [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal; European Commission: Brussels, Belgium, 2019.
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. “Fit for 55”: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality; European Commission: Brussels, Belgium, 2021.
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 21 November 2021).
- Bouzarovski, S.; Thomson, H.; Cornelis, M. Confronting Energy Poverty in Europe: A Research and Policy Agenda. Energies 2021, 14, 858. [Google Scholar] [CrossRef]
- Tundys, B.; Bretyn, A.; Urbaniak, M. Energy Poverty and Sustainable Economic Development: An Exploration of Correlations and Interdependencies in European Countries. Energies 2021, 14, 7640. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Thomson, H.; Cornelis, M.; Varo, A.; Guyet, R. Towards an Inclusive Energy Transition in the European Union: Confronting Energy Poverty Amidst a Global Crisis; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- European Union. Commission recommendation 2020/1563 of 14 October 2020 on energy poverty. Off. J. Eur. Union 2020, L 357, 35–41. [Google Scholar]
- European Commission. Energy Poverty, EU Energy Poverty Observatory. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/energy-consumer-rights/energy-poverty_en (accessed on 10 January 2022).
- European Commission. EU Energy Prices. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/eu-energy-prices_en#energy-prices-2021 (accessed on 10 January 2022).
- Thomson, H.; Snell, C. Quantifying the prevalence of fuel poverty across the European Union. Energy Policy 2013, 52, 563–572. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, A.; Llorca, M.; Jamasb, T. Alleviating energy poverty in Europe: Front-runners and laggards. Energy Econ. 2021, 103, 105575. [Google Scholar] [CrossRef]
- Llorca, M.; Rodriguez-Alvarez, A.; Jamasb, T. Objective vs. subjective fuel poverty and self-assessed health. Energy Econ. 2020, 87, 104736. [Google Scholar] [CrossRef] [Green Version]
- Biernat-Jarka, A.; Trębska, P.; Jarka, S. The Role of Renewable Energy Sources in Alleviating Energy Poverty in Households in Poland. Energies 2021, 14, 2957. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Herrero, S.T. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union. Eur. Urban Reg. Stud. 2017, 24, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Siksnelyte-Butkiene, I.; Streimikiene, D.; Lekavicius, V.; Balezentis, T. Energy poverty indicators: A systematic literature review and comprehensive analysis of integrity. Sustain. Cities Soc. 2021, 67, 102756. [Google Scholar] [CrossRef]
- European Union. Directive 2009/28/EU of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). Off. J. Eur. Union 2009, L 140, 16–62. [Google Scholar]
- European Union. Directive 2009/125/EU of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products (Text with EEA relevance). Off. J. Eur. Union 2009, L 285, 10–35. [Google Scholar]
- European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off. J. Eur. Union 2010, L 153, 13–35. [Google Scholar]
- Thomaßen, G.; Kavvadias, K.; Navarro, J.P.J. The decarbonisation of the EU heating sector through electrification: A parametric analysis. Energy Policy 2021, 148, 111929. [Google Scholar] [CrossRef]
- Abbasi, M.H.; Abdullah, B.; Ahmad, M.W.; Rostami, A.; Cullen, J. Heat transition in the European building sector: Overview of the heat decarbonisation practices through heat pump technology. Sustain. Energy Technol. Assess. 2021, 48, 101630. [Google Scholar] [CrossRef]
- Walker, I.S.; Less, B.D.; Casquero-Modrego, N. Carbon and energy cost impacts of electrification of space heating with heat pumps in the US. Energy Build. 2022, 259, 111910. [Google Scholar] [CrossRef]
- Decuypere, R.; Robaeyst, B.; Hudders, L.; Baccarne, B.; Van de Sompel, D. Transitioning to energy efficient housing: Drivers and barriers of intermediaries in heat pump technology. Energy Policy 2022, 161, 112709. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action, amending Regulations (EC) No 663/2009 and (EC) No 715/2009 of the European Parliament and of the Council, Directives 94/22/EC, 98/70/EC, 2009/31/EC, 2009/73/EC, 2010/31/EU, 2012/27/EU and 2013/30/EU of the European Parliament and of the Council, Council Directives 2009/119/EC and (EU) 2015/652 and repealing Regulation (EU) No 525/2013 of the European Parliament and of the Council. Off. J. Eur. Union 2018, L 328, 1–77. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration; European Commission: Brussels, Belgium, 2020.
- Renewable Energy Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Share_of_renewable_energy_more_than_doubled_between_2004_and_2020 (accessed on 21 January 2022).
- Ministry of Climate and Environment. Energy Policy of Poland Until 2040; Ministry of Climate and Environment: Warsaw, Poland, 2021.
- Statistics Poland. Municipal Infrastructure in 2017; GUS: Warsaw, Poland, 2018.
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The Second Clean Air Outlook; European Commission: Brussels, Belgium, 2021.
- European Union. Judgment of the Court (Third Chamber) of 22 February 2018—European Commission v Republic of Poland. Off. J. Eur. Union 2018, L 134, 6. [Google Scholar]
- European Union. Directive 2016/2284/EU of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Off. J. Eur. Union 2016, L 344, 1–31. [Google Scholar]
- Zogg, M. History of Heat Pumps. Swiss Contributions and International Milestones; Swiss Federal Office of Energy: Oberburg, Switzerland, 2008.
- Gradziuk, P.; Gradziuk, B. Renewable energy sources as a development opportunity for peripheral areas. Econ. Reg. Stud. 2020, 13, 184–198. [Google Scholar] [CrossRef]
- Gradziuk, B.; Gradziuk, P. Heat pumps versus biomass boilers: A comparative analysis of heating costs for public buildings. Ann. Pol. Assoc. Agric. Agribus. Econ. 2020, XXII, 77–85. [Google Scholar] [CrossRef]
- Siudek, A.; Klepacka, A.M.; Florkowski, W.J.; Gradziuk, P. Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets. Energies 2020, 13, 6637. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B. Economic efficiency of applying a heat pump system in heating based on the example of the Ruda-Huta Commune experience. Ann. Pol. Assoc. Agric. Agribus. Econ. 2019, XXI, 88–96. [Google Scholar] [CrossRef]
- Ministerstwo Finansów. Wskaźnik Dochodów Podatkowych Poszczególnych Gmin na 2022 r. Available online: https://www.gov.pl/web/finanse/wskazniki-dochodow-podatkowych-gmin-powiatow-i-wojewodztw-na-2022-r (accessed on 31 March 2022).
- Gradziuk, P.; Gradziuk, B. Ranga odnawialnych źródeł energii w gminnych planach gospodarki niskoemisyjnej. Rocz. Nauk. SERiA 2016, XVIII, 67–72. [Google Scholar]
- Gradziuk, P.; Gradziuk, B. Próba oceny absorpcji środków z funduszy europejskich na rozwój wykorzystania odnawialnych źródeł energii w woj. lubelskim. Rocz. Nauk. Ekon. Rol. I Rozw. Obsz. Wiej. 2017, 104, 95–105. [Google Scholar] [CrossRef]
- Hansen, K. Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Rev. 2019, 24, 68–82. [Google Scholar] [CrossRef]
- National Energy Conservation Agency (KAPE), Institute for Structural Research. Clean Heat 2030. Strategy for Heating; Forum Energii. Analizy i Dialog: Warszawa, Poland, 2019.
- Fakhri, S.A.; Ahlgren, E.; Ekvall, T. Cost-efficiency of urban heating strategies—Modelling scale effects of low-energy building heat supply. Energy Strategy Rev. 2017, 18, 212–223. [Google Scholar] [CrossRef]
- Mikołajuk, H.; Duda, M.; Radović, U.; Skwierz, S.; Lewarski, M.; Kowal, I. Aktualizacja Analizy Porównawczej Kosztów Wytwarzania Energii Elektrycznej w Elektrowniach Jądrowych, Węglowych i Gazowych oraz Odnawialnych Źródłach Energii; Agencja Rynku Energii S.A.: Warsaw, Poland, 2016. [Google Scholar]
- LPG (Polska). Available online: https://www.bankier.pl/gospodarka/wskazniki-makroekonomiczne/lpg-pol (accessed on 3 August 2022).
- Olej Napędowy do Celów Opałowych LOTOS RED. Available online: https://www.lotos.pl/145/type,oil_rgterm/dla_biznesu/hurtowe_ceny_paliw/archiwum_cen_paliw (accessed on 3 August 2022).
- Związek Powiatów Polskich. Zwycięzcy Ogólnopolskiego Rankingu Gmin i Powiatów 2019. Available online: https://www.zpp.pl/artykul/1713-zwyciezcy-ogolnopolskiego-rankingu-gmin-i-powiatow-2019 (accessed on 31 March 2022).
- Dittmann, P. Modele szeregów czasowych. In Prognozowanie Gospodarcze. Metody i Zastosowania, 4th ed.; Cieślak, M., Ed.; WN PWN: Warsaw, Poland, 2005. [Google Scholar]
- Bisgaard, S.; Kulahci, M. Time Series Analysis and Forecasting by Example; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis. Forecasting and Control; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Abunofal, M.; Poshiya, N.; Qussous, R.; Weidlich, A. Comparative Analysis of Electricity Market Prices Based on Different Forecasting Methods. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1285–1290. [Google Scholar]
- Sobotka, A.; Sobotka, P.; Badyda, K. Koncepcja budowy modelu prognostycznego dla cen energii elektrycznej na rynku polskim. Rynek Energii 2019, 1, 25–32. [Google Scholar]
- Gabrielli, P.; Wüthrich, M.; Blume, S.; Sansavini, G. Data-driven modeling for long-term electricity price forecasting. Energy 2022, 244, 123107. [Google Scholar] [CrossRef]
- Manigandan, P.; Alam, M.S.; Alharthi, M.; Khan, U.; Alagirisamy, K.; Pachiyappan, D.; Rehman, A. Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models. Energies 2021, 14, 6021. [Google Scholar] [CrossRef]
- Zhao, Z.; Fu, C.; Wang, C.; Miller, C.J. Improvement to the Prediction of Fuel Cost Distributions Using ARIMA Model. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Gaur, A.S.; Fitiwi, D.Z.; Curtis, J. Heat pumps and our low-carbon future: A comprehensive review. Energy Res. Soc. Sci. 2021, 71, 101764. [Google Scholar] [CrossRef]
- Rosenow, J.; Rubczyński, A.; Kleinschmidt, P. Heat Electrification in Poland The path to Clean Heat. Forum Energii. Analizy i Dialog. 2021. Available online: https://www.forum-energii.eu/public/upload/articles/files/heat%20electrification_EN.pdf (accessed on 31 July 2022).
- Le Dû, M.; Dutil, Y.; Rousse, D.R.; Paradis, P.L.; Groulx, D. Economic and energy analysis of domestic ground source heat pump systems in four Canadian cities. J. Renew. Sustain. Energy 2015, 7, 053113. [Google Scholar] [CrossRef]
- Energy Consumption in Households. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households (accessed on 31 July 2022).
- Gawlik, L.; Mokrzycki, E. Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package. Energies 2019, 12, 3323. [Google Scholar] [CrossRef] [Green Version]
- Drożdż, W.; Mróz-Malik, O.; Kopiczko, M. The Future of the Polish Energy Mix in the Context of Social Expectations. Energies 2021, 14, 5341. [Google Scholar] [CrossRef]
- Statistisc Poland. Energy from Renewable Sources in 2020. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/en/defaultaktualnosci/3304/3/13/1/energy_from_renewable_sources_in_2020.pdf (accessed on 21 July 2022).
- Sewastianik, S.; Gajewski, A. An Environmental Assessment of Heat Pumps in Poland. Energies 2021, 14, 8104. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Sowiżdżał, A.; Tomaszewska, B. Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland. Energies 2020, 13, 454. [Google Scholar] [CrossRef]
- Adamczyk, J.; Piwowar, A.; Dzikuć, M. Air protection programmes in Poland in the context of the low emission. Environ. Sci. Pollut. Res. 2017, 24, 16316–16327. [Google Scholar] [CrossRef] [Green Version]
- Deetjen, T.A.; Walsh, L.; Vaishnav, P. US residential heat pumps: The private economic potential and its emissions, health, and grid impacts. Environ. Res. Lett. 2021, 16, 084024. [Google Scholar] [CrossRef]
- Kelly, J.A.; Fu, M.; Clinch, J.P. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels. Energy Policy 2016, 98, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Broin, E.Ó.; Kelly, J.A.; Santos, G.S.; Grythe, H.; Svendby, T.; Solberg, S.; Kelleher, L.; Clinch, J.P. Hitting the hotspots–Targeted deployment of air source heat pump technology to deliver clean air communities and climate progress: A case study of Ireland. Atmos. Environ. X 2022, 13, 100155. [Google Scholar] [CrossRef]
- Carella, A.; D’Orazio, A. The heat pumps for better urban air quality. Sustain. Cities Soc. 2021, 75, 103314. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Mauzerall, D.L. Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region. Energy Econ. 2020, 90, 104844. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ramadan, M.; Naher, S.; Pullen, K.R.; Olabi, A.-G. The impacts of different heating systems on the environment: A review. Sci. Total Environ. 2021, 766, 142625. [Google Scholar] [CrossRef]
- Księżopolski, K.; Drygas, M.; Pronińska, K.; Nurzyńska, I. The Economic Effects of New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland. Energies 2020, 13, 6358. [Google Scholar] [CrossRef]
- Kapuściński, J.; Rodzoch, A. Geotermia niskotemperaturowa w Polsce i na świecie. In Uwarunkowania Techniczne, Środowiskowe i Ekonomiczne; Ministerstwo Środowiska: Warszawa, Polska, 2010. [Google Scholar]
- Klepacka, A.M. Sustainable Development and Renewable Energy Sectors: Selected Indicators in European Union and Poland. Probl. World Agric. 2018, 18, 250–258. [Google Scholar] [CrossRef]
Specification | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Aerothermal | 3450 | 5445 | 6699 | 9007 | 21,982 | 45,361 | 61,731 | 81,636 | 112,950 | 167,075 |
Ground | 15,500 | 20,621 | 25,763 | 31,038 | 36,605 | 41,995 | 47,655 | 53,486 | 60,196 | 65,818 |
Total | 18,950 | 26,066 | 32,462 | 40,045 | 58,587 | 87,356 | 109,386 | 135,122 | 173,146 | 222,893 |
Output of ambient heat [TJ] | 2337 | 2854 | 3627 | 4577 | 5566 | 6570 | 7683 | 8958 | 10,681 | 12,481 |
Consumption of energy by heat pumps [TJ] | 872 | 1057 | 1333 | 1823 | 2521 | 2979 | 3508 | 4112 | 4898 | 5720 |
Seasonal Coefficient of Performance | 2.68 | 2.70 | 2.72 | 2.51 | 2.21 | 2.20 | 2.19 | 2.18 | 2.18 | 2.18 |
Share of heat pumps in obtaining energy from RES (H&C) [%] | 1.1 | 1.3 | 1.6 | 2.2 | 2.5 | 2.8 | 3.2 | 2.4 | 3.0 | 3.5 |
Share of heat pumps in the H&C sector [%] | 0.15 | 0.18 | 0.23 | 0.31 | 0.38 | 0.42 | 0.48 | 0.52 | 0.65 | 0.78 |
No. | Building Name | Heated Surface [m2] | Heat Source before Modernization | Heat Pumps (HPS) | Ground Heat Exchange Vertical Collectors | Peak Heat Source (PHS) | Investment Costs [PLN] | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | [kW] | Type | Number & Depth [m] | Type | [kW] | HPS | PHS | ||||
1. | School Complex in Ruda-Huta | 3.600 | oil | Danfoss DHP-R42 | 3 × 42 | HDPE 100/RC SDR 17 | 28 × 100 | VITOPLEX 200 Typ SX2 (oil)) | 90–560 | 512,172 | 104,328 |
2. | Municipal building in Ruda Huta | 721 | coal (LPG) | Alpha Innotec SWP 371 | 37 | Aspol–FV Energeo | 8 × 100 | Buderus Logamax plus GB 162 (LPG) | 70 | 166,050 | 67,154 |
3. | Municipal Health Centre in Ruda Huta | 1051 | oil | Alpha Innotec SWP 581 | 58 | Aspol–FV Energeo | 11 × 100 | Geminox 45 (oil) Ferroli 105 (oil) | 150 | 252,150 | 128,326 |
4. | Communal Office of Ruda-Huta | 414 | oil | Alpha Innotec SWP 291 | 29 | Aspol–FV Energeo | 5 × 92 | ACV Prestige 75 Solo (LPG) | 75 | 123,000 | 127,615 |
5. | Centre of Culture and Recreation in Rudka | 543 | electricity | Alpha Innotec SWP 371 | 37 | Aspol–FV Energeo | 7 × 100 | Electric heaters | 18 | 172,200 | 7248 |
6. | Culture Centre in Ruda-Kolonia | 317 | electricity | Alpha Innotec SWC 170H | 17 | Aspol–FV Energeo | 4 × 85 | Electric heaters | 15 | 92,250 | 6122 |
7. | Culture Centre in Żalin | 229 | electricity | Alpha Innotec SWC 170H | 17 | Aspol–FV Energeo | 4 × 80 | Electric heaters | 15 | 92,250 | 6122 |
8. | Library in Ruda Huta | 1609 | LPG | Buderus WPS 64.2HT | 2 × 64 | HDPE 100/RC SDR 17 | 20 × 92 | Buderus Logamax plus GB V2 (LPG) | 100 | 201,685 | 205,171 |
Statistic | Electricity | LPG | Oil Ekoterm |
---|---|---|---|
Mean | 0.7317 | 2.3069 | 2.9135 |
Standard error | 0.0131 | 0.0413 | 0.0696 |
Median | 0.7200 | 2.2100 | 2.8100 |
Mode | 0.7200 | 1.9800 | 2.3800 |
Standard dev. | 0.1404 | 0.4429 | 0.7465 |
Variance | 0.0197 | 0.1961 | 0.5572 |
Kurtosis | 2.2115 | 1.4431 | 7.4066 |
Skewness | 1.2473 | 1.1296 | 2.3971 |
Range | 0.6800 | 2.0800 | 4.3700 |
Maximum | 1.1900 | 3.6800 | 6.1600 |
Minimum | 0.5100 | 1.6000 | 1.7900 |
Count | 115 | 115 | 115 |
Geometric mean | 0.7196 | 2.2685 | 2.8397 |
Harmonic mean | 0.7085 | 2.2331 | 2.7797 |
Specification | Electricity | LPG | Ekoterm Oil * |
---|---|---|---|
p—trend auto-regression (AR) order | 0 | 1 | 0 |
d—trend difference order | 1 | 1 | 1 |
q—trend Moving Average (MA) order | 1 | 0 | 1 |
P—seasonal auto-regressive order | 1 | 1 | - |
D—seasonal difference order | 0 | 0 | - |
Q—seasonal moving average order | 0 | 2 | - |
m—the number of time steps for a single seasonal period | 12 | 4 | - |
Residual variance | 0.0018 | 0.0186 | 0.0359 |
MAPE (%) | 5.62 | 4.41 | 4.62 |
Average forecast price (PLN) | 1.83 | 3.87 | 7.87 |
No. | Building Name | SPBT | LCOH | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electricity | Oil | LPG | Electricity | Oil | LPG | Heat Pumps | ||||||||||||||||
Mean | Max. | Forecast | Mean | Max. | Forecast | Mean | Max. | Forecast | Mean | Max. | Forecast | Mean | Max. | Forecast | Mean | Max. | Forecast | Mean | Max. | Forecast | ||
1. | School Complex in Ruda-Huta | - | - | - | 6.9 | 2.7 | 2.4 | - | - | - | - | - | - | 87.4 | 182.4 | 232.3 | - | - | - | 66.3 | 99.1 | 144.7 |
2. | Municipal building in Ruda-Huta | - | - | - | - | - | - | 6.1 | 3.9 | 5.8 | - | - | - | - | - | - | 128.4 | 200.4 | 210.4 | 76.0 | 108.8 | 154.4 |
3. | Municipal Health Centre in Ruda-Huta | - | - | - | 6.7 | 2.5 | 2.3 | - | - | - | - | - | - | 99.8 | 243.0 | 276.4 | - | - | - | 71.4 | 104.1 | 149.7 |
4. | Communal Office of Ruda-Huta | - | - | - | - | - | - | 4.7 | 3.0 | 6.4 | - | - | - | - | - | - | 107.2 | 165.4 | 173.5 | 69.7 | 102.5 | 148.1 |
5. | Centre of Culture and Recreation in Rudka | 7.8 | 4.8 | 3.1 | - | - | - | - | - | - | 201.5 | 325.8 | 498.8 | - | - | - | - | - | - | 72.3 | 105.0 | 150.5 |
6. | Culture Centre in Ruda-Kolonia | 7.1 | 4.3 | 2.8 | - | - | - | - | - | - | 215.0 | 346.1 | 528.5 | - | - | - | - | - | - | 74.2 | 107.0 | 152.6 |
7. | Culture Centre in Żalin | 6.7 | 4.1 | 2.7 | - | - | - | - | - | - | 213.3 | 343.8 | 525.4 | - | - | - | - | - | - | 72.1 | 104.9 | 150.6 |
8. | Library in Ruda-Huta | - | - | - | - | - | - | 4.1 | 2.7 | 8.2 | - | - | - | - | - | - | 94.9 | 147.6 | 154.9 | 64.1 | 96.9 | 142.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradziuk, P.; Siudek, A.; Klepacka, A.M.; Florkowski, W.J.; Trocewicz, A.; Skorokhod, I. Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas. Energies 2022, 15, 7903. https://doi.org/10.3390/en15217903
Gradziuk P, Siudek A, Klepacka AM, Florkowski WJ, Trocewicz A, Skorokhod I. Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas. Energies. 2022; 15(21):7903. https://doi.org/10.3390/en15217903
Chicago/Turabian StyleGradziuk, Piotr, Aleksandra Siudek, Anna M. Klepacka, Wojciech J. Florkowski, Anna Trocewicz, and Iryna Skorokhod. 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas" Energies 15, no. 21: 7903. https://doi.org/10.3390/en15217903
APA StyleGradziuk, P., Siudek, A., Klepacka, A. M., Florkowski, W. J., Trocewicz, A., & Skorokhod, I. (2022). Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas. Energies, 15(21), 7903. https://doi.org/10.3390/en15217903