Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy
Abstract
:1. Introduction
2. Materials and Methods
- -
- Phase 1: up to 9 companies involved, up to 10%vol of H2 injection into NG mixture, about 500 tons of H2 production through a 10 MW electrolyzer nominal power, H2 storage capacity up to 10–14 tons and methanation reactor capacity of about 500 kW; finally, H2 for transport sector is at initial stage;
- -
- Phase 2: up to 20 companies involved, up to 20%vol of H2 injection into NG mixture, more than 1000 tons of H2 production through a 20 MW electrolyzer nominal power, H2 storage capacity up to 30–35 tons and methanation reactor capacity of about 500 kW; finally, H2 for transport sector is at development stage.
- -
- The electrolyzer nominal capacity was evaluated using the following relation:
- -
- Considering the calculated PV system power, the annual electric energy production of the PV system was evaluated through the following equation:
- -
- Finally, the surface required to install the PV system was calculated as follows:
3. Results and Discussion
3.1. Sizing of the Intervention
3.2. Cost–Benefit Analysis
4. Conclusions
- Several companies in the industrial area are ready to be supplied by an H2NG mixture with a hydrogen content equal to 10% by 2028 since limited modification to their production systems is required;
- According to the energy demand forecast in the area, a 5 MW electrolyzer will be sufficient up to 2030, whereas, according to the development phases of the project, the electrolyzer power will necessarily increase up to 20 MW, capable to produce about 1000 ton/year of green hydrogen;
- In the long-term scenario, a reduction in CO2 produced is expected up to 31,298 tons/year by 2030.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Energy Transitions Commission. Mission Possible: Reaching Net-Zero Carbon Emissions from Harder-to-Abate Sectors by Mid-Century. 2018. Available online: https://www.energy-transitions.org/wp-content/uploads/2020/08/ETC_MissionPossible_FullReport.pdf (accessed on 23 October 2022).
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- IRENA. Green Hydrogen for Industry: A Guide to Policy Making, International Renewable Energy Agency. 2022. Available online: https://irena.org/publications/2020/Nov/Green-hydrogen (accessed on 23 October 2022).
- Bataille, C.G.F. Physical and policy pathways to net-zero emissions industry. WIREs Clim. Change 2020, 11, e633. [Google Scholar] [CrossRef]
- Messaoudani, Z.L.; Rigas, F.; Hamid, M.D.B.; Hassan, C.R.C. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review. Int. J. Hydrogen Energy 2016, 41, 17511–17525. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Fu, T.; Zhou, Q. Explosion characteristics and suppression of hybrid Mg/H2 mixtures. Int. J. Hydrogen Energy 2021, 46, 38934–38943. [Google Scholar] [CrossRef]
- Stetsenko, A.A.; Nedzelsky, S.D.; Naumenko, V.A. The effect of hydrogen on the physical properties of natural gas and the metrological characteristics of its metering systems. Metrol. Instrum. 2019, 6, 45–50. [Google Scholar] [CrossRef]
- Jaworski, J.; Kułaga, P.; Blacharski, T. Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters. Energies 2020, 13, 3006. [Google Scholar] [CrossRef]
- Jaworski, J.; Dudek, A. Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters. Energies 2020, 13, 5428. [Google Scholar] [CrossRef]
- Dell’Isola, M.; Ficco, G.; Moretti, L.; Jaworski, J.; Kułaga, P.; Kukulska–Zając, E. Impact of Hydrogen Injection on Natural Gas Measurement. Energies 2021, 14, 8461. [Google Scholar] [CrossRef]
- UNI EN ISO 6976:2017; Natural Gas-Calculation of Calorific Values, Density, Relative Density and Wobbe Indices from Composition. CEN-CENELEC: Brussels, Belgium, 2017.
- UNI EN ISO 12213-2:2010; Natural Gas-Calculation of Compression Factor-Calculation Using Molar-Composition Analysis. CEN-CENELEC: Brussels, Belgium, 2010.
- UNI EN ISO 12213-3:2010; Natural Gas-Calculation of Compression Factor-Calculation Using Physical Properties. CEN-CENELEC: Brussels, Belgium, 2010.
- GreenHouse Gas Protocol. Available online: https://ghgprotocol.org/ (accessed on 19 May 2022).
- Snam; Terna. Scenari di Riferimento Per il Piano di Sviluppo reti Trasporto Gas 2022–2031. Available online: https://www.arera.it/allegati/operatori/pds/22/Pds2022_DocumentoDescrizioneScenariPiani2022.pdf (accessed on 23 October 2022).
- Snam; Terna. Scenario National Trend Italia. 2021. Available online: https://www.snam.it/export/sites/snam-rp/repository-srg/file/it/business-servizi/Processi_Online/Allacciamenti/informazioni/piano-decennale/pd_2021_2030/SCENARIO-NATIONAL-TREND-ITALIA_def.pdf (accessed on 19 May 2022).
- ENTSOs. TYNDP 2020-Scenario Report. 2020. Available online: https://2020.entsos-tyndp-scenarios.eu/wp-content/uploads/2020/06/TYNDP_2020_Joint_ScenarioReport_final.pdf (accessed on 19 May 2022).
- European Commission. Photovoltaic Geographical Information System. Available online: https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-system_en (accessed on 19 May 2022).
- Sapountzi, F.M.; Gracia, J.M.; Fredriksson, H.O.; Niemantsverdriet, J.H. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci. 2017, 58, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Mazza, A.; Bompard, E.; Chicco, G. Applications of power to gas technologies in emerging electrical systems. Renew. Sustain. Energy Rev. 2018, 92, 794–806. [Google Scholar] [CrossRef]
- Bessarabov, D.G.; Wang, H.; Li, H.; Zhao, N. (Eds.) PEM Electrolysis for Hydrogen Production: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Yates, J.; Daiyan, R.; Patterson, R.; Egan, R.; Amal, R.; Ho-Baille, A.; Chang, N.L. Techno-economic Analysis of Hydrogen Electrolysis from Off-Grid Stand-Alone Photovoltaics Incorporating Uncertainty Analysis. Cell Rep. Phys. Sci. 2020, 1, 100209. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Investopedia. Cost-Benefit Analysis (CBA) Definition. 2022. Available online: https://www.investopedia.com/terms/c/cost-benefitanalysis.asp (accessed on 19 May 2022).
- Rahil, A.; Gammon, R.; Brown, N.; Udie, J.; Mazhar, M.U. Potential economic benefits of carbon dioxide (CO2) reduction due to renewable energy and electrolytic hydrogen fuel deployment under current and long term forecasting of the Social Carbon Cost (SCC). Energy Rep. 2019, 5, 602–618. [Google Scholar] [CrossRef]
- IEA. World Energy Model Documentation. 2021. Available online: https://iea.blob.core.windows.net/assets/932ea201-0972-4231-8d81-356300e9fc43/WEM_Documentation_WEO2021.pdf (accessed on 19 May 2022).
- Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCCN_TNA_B14 (accessed on 19 May 2022).
- EPA. Quantifying the Multiple Benefits of Energy Efficiency and Renewable Energy. Available online: https://www.epa.gov/sites/default/files/2018-07/documents/epa_slb_multiple_benefits_508.pdf (accessed on 19 May 2022).
- Gas For Climate, European Hydrogen Backbone: Analysing Future Demand, Supply, and Transport of Hydrogen. 2021. Available online: https://transparency.entsog.eu/ (accessed on 19 May 2022).
- European Commission. Directorate General for Energy. Guidehouse. Tractebel Impact. Hydrogen Generation in Europe: Overview of Costs and Key Benefits; Publications Office: Luxembourg, Luxembourg, 2020; Available online: https://data.europa.eu/doi/10.2833/122757 (accessed on 19 May 2022).
Mixture | HHV (MJ/Sm3) | HHV (MWh/Sm3) | HHV (MWh/kg) | d (kg/Sm3) |
---|---|---|---|---|
100% NG | 39.5391 | 0.0110 | 0.0146 | 0.7527 |
90% NG + 10% H2 | 36.7799 | 0.0102 | 0.0149 | 0.6856 |
80% NG + 20% H2 | 34.0254 | 0.0095 | 0.0153 | 0.6186 |
100% H2 | 12.1023 | 0.0034 | 0.0396 | 0.0850 |
Mixture | NG Volume (Sm3 106) | Mix Volume (Sm3 106) | H2 Volume (Sm3 106) | H2 Mass (ton) | CO2 Produced (ton 103) | CO2 Avoided (ton 103) |
---|---|---|---|---|---|---|
100% NG | 1 | - | - | - | 2.03 | - |
90% NG + 10% H2 | - | 1.075 | 0.108 | 9.1 | 1.83 | 0.20 |
80% NG + 20% H2 | - | 1.162 | 0.232 | 19.8 | 1.62 | 0.41 |
100% H2 | - | 3.267 | 3.267 | 277.6 | - | 2.03 |
Scenario | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
National NG consumption (billions Sm3) | |||||
Global Ambition | 71.3 | 72.2 | 74.9 | 72.6 | 70.3 |
National Trend Italia | 71.3 | 72.2 | 62.4 | 63.5 | 64.5 |
Average consumption | 71.3 | 72.2 | 68.7 | 68.0 | 67.4 |
NG demand multiplicative factor | |||||
Global Ambition | 1.000 | 1.013 | 1.050 | 1.018 | 0.986 |
National Trend Italia | 1.000 | 1.013 | 0.875 | 0.890 | 0.905 |
Average multiplicative factor | 1.000 | 1.013 | 0.963 | 0.954 | 0.945 |
AEL | PEMEL | SOEL | |
---|---|---|---|
Operative temperature (°C) | 20 ÷ 80 | 20 ÷ 200 | 500 ÷ 1000 |
Efficiency (HHV, %) | 59 ÷ 70 | 65 ÷ 82 | 40 ÷ 60 |
Nominal production (Nm3/h) | 100 ÷ 103 | 100 ÷ 102 | - |
Nominal power (kW) | 100 ÷ 103 | 100 ÷ 102 | - |
Water consumption (L/kgH2) | 9 ÷ 11 [22] | 9 ÷ 11 [22] | 9 ÷ 11 [22] |
- | 18.04 [23] | 9.1 [23] | |
Specific energy consumption (kWh/kgH2) | 50 ÷ 83 | 65 ÷ 81 | 33 |
Cold start time | 10 min—h | s—min | - |
Restarting time | 30 ÷ 60 min | not necessary | - |
Rangeability (% P) | 25 ÷ 100% | 5 ÷ 100% | - |
System costs (EUR/kW) | 1000 | >2000 | - |
2026 | 2027 | 2028 | 2029 | 2030 | 2035 | 2040 | |
---|---|---|---|---|---|---|---|
Mix NG/H2 (%) | 10 | 10 | 10 | 20 | 20 | 100 | 100 |
Demand multiplier | 1.003 | 0.993 | 0.983 | 0.973 | 0.963 | 0.954 | 0.945 |
H2 needed (ton) | 80 | 282 | 425 | 480 | 518 | 827 | 1303 |
Electrolyzer efficiency (kWh/kg) | 60 | 60 | 60 | 60 | 60 | 50 | 50 |
Electrolyzer efficiency (%) | 66 | 66 | 66 | 66 | 66 | 79 | 79 |
Demand for energy (MWh) | 4818 | 16,914 | 25,519 | 28,803 | 31,109 | 41,328 | 65,163 |
Electrolyzer operation hours (h/a) | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 |
Electrolyzer power, (MW) | 1.6 | 5.6 | 8.5 | 9.6 | 10.4 | 13.8 | 21.7 |
PV power, (MW) | 8.0 | 28.2 | 42.5 | 48.0 | 51.8 | 68.9 | 108.6 |
Electric energy, (MWh/y) | 10,984 | 38,564 | 58,184 | 65,670 | 70,929 | 94,227 | 148,572 |
Surface, (ha) | 12 | 42 | 64 | 72 | 78 | 103 | 163 |
Description | CAPEX, M EUR | OPEX, M EUR | Mixed, M EUR | ||||||
---|---|---|---|---|---|---|---|---|---|
2023 2030 | 2031 2035 | 2036 2040 | 2023 2030 | 2031 2035 | 2036 2040 | 2023 2030 | 2031 2035 | 2036 2040 | |
NG network | 5.1 | 1.4 | 1 | 0.6 | 2.5 | 3.8 | |||
PV | 100 | 0 | 0 | 6.9 | 7.5 | 7.5 | |||
Electrolyzer | 12 | 288 | 150 | 2.2 | 15.5 | 37.9 | |||
Compressor | 11.4 | 0 | 0 | 3.3 | 2.7 | 0 | 0.9 | 5.3 | |
Storage | 15 | 0 | 0 | 2 | 1.8 | 0 | 63.2 | 352.3 | |
Blending | 1.6 | 0 | 0 | ||||||
Safety factor | 10 | 0 | 0 | ||||||
Total | 155.1 | 307.4 | 151 | 15 | 30 | 49.2 | 64.1 | 357.6 |
Benefit, M EUR | 2023–2030 | 2031–2035 | 2036–2040 |
---|---|---|---|
WCS—BCS | 4.7–9.3 | 18.9–37.8 | 67.9–150.9 |
WCS—BCS | 91–136.5 | 218–327 | 298.5–444.7 |
WCS—BCS | 0 | 38.6–63.5 | 215.2–353.9 |
Total Benefit WCS—BCS | 95.7–145.8 | 275.5–428.3 | 581.6–949.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficco, G.; Arpino, F.; Dell’Isola, M.; Grimaldi, M.; Lisi, S. Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy. Energies 2022, 15, 8072. https://doi.org/10.3390/en15218072
Ficco G, Arpino F, Dell’Isola M, Grimaldi M, Lisi S. Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy. Energies. 2022; 15(21):8072. https://doi.org/10.3390/en15218072
Chicago/Turabian StyleFicco, Giorgio, Fausto Arpino, Marco Dell’Isola, Michele Grimaldi, and Silvia Lisi. 2022. "Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy" Energies 15, no. 21: 8072. https://doi.org/10.3390/en15218072
APA StyleFicco, G., Arpino, F., Dell’Isola, M., Grimaldi, M., & Lisi, S. (2022). Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy. Energies, 15(21), 8072. https://doi.org/10.3390/en15218072