Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints
Abstract
:1. Introduction
- Based on the robust theory, an IBG with VSCOM model for its economical and sizing analysis in the power system planning is proposed;
- The moth flame optimization algorithm to solve the balance between economy and robustness problem attributing to the stochastics and nonlinearity from the IBG and VSCOM is modified;
- The benefits of the VSCOM with different storages on the IBG annually economical operation is compared.
2. The Structure of VSCOM and IBG Plant Model
2.1. VSCOM Structure
2.2. IBG Plant Model
3. Configuration Model of VSCOM
3.1. Objective Function
3.2. Constraints
3.3. Analysis of Uncertainty with Wind Power
4. The Algorithm for Solving Optimal Configuration Model of VSCOM
5. Case Study
5.1. Basic Parameter Setting of Cases
5.2. Result Analysis
5.3. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, M.S.; Al-Ismail, F.S.; Salem, A.; Abido, M.A. High-Level Penetration of Renewable Energy Sources into Grid Utility: Challenges and Solutions. IEEE Access 2020, 8, 190277–190299. [Google Scholar] [CrossRef]
- Singh, B.; Arya, S.R. Adaptive theory-based improved linear sinusoidal tracer control algorithm for DSTATCOM. IEEE Trans. Power Electron. 2013, 28, 3768–3778. [Google Scholar] [CrossRef]
- Srinivas, M.; Hussain, I.; Singh, B. Combined LMS-LMF-based control algorithm of DSTATCOM for power quality enhancement in distribution system. IEEE Trans. Ind. Electron. 2016, 63, 4160–4168. [Google Scholar] [CrossRef]
- Badoni, M.; Singh, A.; Singh, B. Adaptive neurofuzzy inference system least-mean-square-based control algorithm for DSTATCOM. IEEE Trans. Ind. Informat. 2016, 12, 483–492. [Google Scholar] [CrossRef]
- Farivar, G.; Hredzak, B.; Agelidis, V.G. Reduced-capacitance thin film H-bridge multilevel STATCOM control utilizing an analytic filtering scheme. IEEE Trans. Ind. Electron. 2015, 62, 6457–6468. [Google Scholar] [CrossRef]
- Badoni, M.; Singh, A.; Singh, B. Variable forgetting factor recursive least square control algorithm for DSTATCOM. IEEE Trans. Power Del. 2015, 30, 2353–2361. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Duan, J.; Qiu, G.; Liu, T.; Liu, J. DDPG-Based Multi-Agent Framework for SVC Tuning in Urban Power Grid With Renewable Energy Resources. IEEE Trans. Power Syst. 2021, 36, 5465–5475. [Google Scholar] [CrossRef]
- Wan, Y.; Murad, M.A.A.; Liu, M.; Milano, F. Voltage frequency control using SVC devices coupled with voltage dependent loads. IEEE Trans. Power Syst. 2019, 34, 1589–1597. [Google Scholar] [CrossRef]
- Singh, B.; Arya, S.R. Back-propagation control algorithm for power quality improvement using DSTATCOM. IEEE Trans. Ind. Electron. 2014, 61, 1204–1212. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Milano, F.; O’Donnell, T. 100% Converter-interfaced Generation using Virtual Synchronous Generator Control: A case study based on the Irish System. Electr. Power Syst. Res. 2020, 187, 106475. [Google Scholar] [CrossRef]
- D’Arco, S.; Suul, J.A.; Fosso, O.B. A Virtual Synchronous Machine implementation for distributed control of power converters in Smart Grids. Electr. Power Syst. Res. 2015, 122, 180–197. [Google Scholar] [CrossRef]
- Zhong, Q.C.; Weiss, G. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1267. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, J.; Huang, Q.; Milano, F.; Zhang, Y.; Hu, W. Nonlinear Virtual Inertia Control of WTGs for Enhancing Primary Frequency Response and Suppressing Drivetrain Torsional Oscillations. IEEE Trans. Power Syst. 2021, 36, 4102–4113. [Google Scholar] [CrossRef]
- Chen, J.; Milano, F.; O’Donnell, T. Assessment of Grid-Feeding Converter Voltage Stability. IEEE Trans. Power Syst. 2019, 34, 3980–3982. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Wang, Y.; Weng, M.; Chen, Z.; Li, X. Design and Operation Analysis of Virtual Synchronous Compensator. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3835–3845. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Zhai, B.; Chen, G.; Yang, Q.; Chen, J. A Comparative Study of the Virtual Synchronous Compensator on the Voltage Stability Enhancement. In Proceedings of the International Conference on Renewable Energies and Smart Technologies (REST2022), Tirana, Albania, 28–29 July 2022. [Google Scholar]
- Li, G.; Chen, Y.; Luo, A.; Wang, H. An Enhancing Grid Stiffness Control Strategy of STATCOM/BESS for Damping Sub-Synchronous Resonance in Wind Farm Connected to Weak Grid. IEEE Trans. Ind. Informat. 2020, 16, 5835–5845. [Google Scholar] [CrossRef]
- Vetoshkin, L.; Müller, Z. Dynamic Stability Improvement of Power System by Means of STATCOM with Virtual Inertia. IEEE Access 2021, 9, 116105–116114. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Guo, R.; Zhao, N.; Milano, F.; O’Donnell, T. Co-ordinated grid forming control of AC-side-connected energy storage systems for converter-interfaced generation. Int. J. Electr. Power Energy Syst. 2021, 133, 107201. [Google Scholar] [CrossRef]
- Li, Y.; Feng, C.; Wen, F.; Wang, K.; Huang, Y. Energy Pricing and Management for Park-level Energy Internets with Electric Vehicles and Power-to-gas Devices. Autom. Electr. Power Syst. 2018, 16, 1–10. [Google Scholar]
- Wu, J.; Ai, X.; Hu, J.; Wu, Z. Peer-to-peer Modeling and Optimal Operation for Prosumer Energy Management in Intelligent Community. Power Syst. Technol. 2020, 11, 52–61. [Google Scholar]
- Ma, L.; Liu, N.; Zhang, J.; Wang, L. Real-Time Rolling Horizon Energy Management for the Energy-Hub-Coordinated Prosumer Community from a Cooperative Perspective. IEEE Trans. Power Syst. 2019, 2, 1227–1242. [Google Scholar] [CrossRef]
- Samira, S.F.; Bleeker, C.; van Wijk, A.; Lukszo, Z. Hydrogen-based integrated energy and mobility system for a real-life office environment. Appl. Energy 2020, 264, 114695. [Google Scholar]
- Li, X.; Wang, W.; Wang, H.; Fan, X.; Wu, J.; Wang, K. Energy Storage Allocation Strategy of Wind-solar-storage Combined System Based on Robust Optimization. Acta Energ. Sol. Sin. 2020, 8, 67–78. [Google Scholar]
- Guo, Z.; Li, G.; Zhou, M.; Wang, X. A Decentralized and Robust Optimal Scheduling Model of Integrated Electricity-gas System for Wind Power Accommodation. Proc. CSEE 2020, 20, 6442–6455. [Google Scholar]
- Li, H.; He, F.; Chen, Y.; Luo, J. Multi-objective self-organizing optimization for constrained sparse array synthesis. Swarm Evol. Comput. 2020, 58, 100743. [Google Scholar] [CrossRef]
- Liu, D.; Tan, K.C.; Goh, C.K.; Ho, W.K. A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007, 37, 42–50. [Google Scholar] [CrossRef]
- Anping, H.U.; Bo, Y.A.N.G.; Pengpeng, P.A.N. Study on Inertial Characteristics of Energy Storage System with Power Electronic Interface. Proc. CSEE 2018, 17, 4999–5008. [Google Scholar]
- Tan, J.; Zhang, Y. Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services. IEEE Trans. Sustain. Energy 2017, 3, 1140–1153. [Google Scholar] [CrossRef]
- Kuang, L.; Lu, Y.; Lu, X.; Lin, X. Frequency Stability Constrained Optimal Dispatch Model of Microgrid with Virtual Synchronous Machines. Proc. CSEE 2022, 1, 71–83. [Google Scholar]
- Li, X.; Wang, W.; Wang, H.; Wu, J.; Xu, Q. Robust Optimized Operation Strategy for Cross-region Flexibility with Bilateral Uncertainty of Load Source. High Volt. Eng. 2020, 05, 1538–1549. [Google Scholar]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.—Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
Styles | Investment Cost (RMB/MWh) | Service Life (Year) | Charge State |
---|---|---|---|
Storage | 325,000 | 20 | 0.1~0.9 |
SVG | 10,000 | 20 | - |
Energy Storage Type | Configuration Capacity/(MW) | Income from Grid/(RMB) | Investment Cost/(RMB) | Penalty Cost/(RMB) | Total Income/(RMB) | |
---|---|---|---|---|---|---|
Hybrid | Lithium | 30 | 1.27 × 108 | 7.43 × 105 | 8.28 × 107 | 3.56 × 108 |
Single | Lithium | 35 | 1.17 × 108 | 5.09 × 105 | 9.33 × 107 | 3.36 × 108 |
Configuration Scheme (MW) | Net Profit (Million RMB) | POE | ||
---|---|---|---|---|
Storage | SVG | |||
98% | 45 | 18 | 57.3 | 0.02% |
95% | 55 | 25 | 64.6 | 1.11% |
80% | 70 | 30 | 70.2 | 24.23% |
Configuration Scheme (MW) | Net Profit (Million Yuan) | POE | ||
---|---|---|---|---|
Storage | SVG | |||
2 | 48 | 18 | 69.5 | 54.4% |
10 | 50 | 20 | 69.6 | 0.76% |
20 | 51 | 21 | 69.6 | 0.13% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Song, P.; Yin, C.; Kang, P.; Zhai, B. Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints. Energies 2022, 15, 9306. https://doi.org/10.3390/en15249306
Xu Z, Song P, Yin C, Kang P, Zhai B. Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints. Energies. 2022; 15(24):9306. https://doi.org/10.3390/en15249306
Chicago/Turabian StyleXu, Zhi, Pengfei Song, Chunya Yin, Pengpeng Kang, and Baoyu Zhai. 2022. "Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints" Energies 15, no. 24: 9306. https://doi.org/10.3390/en15249306
APA StyleXu, Z., Song, P., Yin, C., Kang, P., & Zhai, B. (2022). Capacity Allocation Strategy Using Virtual Synchronous Compensator for Renewable Energy Stations Based on Fuzzy Chance Constraints. Energies, 15(24), 9306. https://doi.org/10.3390/en15249306