The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions
Abstract
:1. Introduction
2. Simulation Study
2.1. Vehicle Parameters
2.2. Software Description
2.3. Driving Cycles
2.3.1. Speed Profiles for Various Daytimes
- during the morning rush hour,
- at noon,
- during the afternoon rush hour.
2.3.2. Speed Profiles for Different Road Types
3. Results
3.1. Energy Analysis of an Electric Vehicle during Trips at Different Times of the Day
3.2. Energy Analysis of an Electric Vehicle during Trips in Different Road Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Wang, Z.; Huangfu, Z.; Ravey, A.; Chrenko, D.; Gao, F. Hierarchical Operation of Electric Vehicle Charging Station in Smart Grid Integration Applications—An Overview. Int. J. Electr. Power Energy Syst. 2022, 139, 108005. [Google Scholar] [CrossRef]
- Triviño, A.; González-González, J.M.; Aguado, J.A. Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies 2021, 14, 1547. [Google Scholar] [CrossRef]
- Wang, B.; Min, H.; Sun, W.; Yu, Y. Research on Optimal Charging of Power Lithium-Ion Batteries in Wide Temperature Range Based on Variable Weighting Factors. Energies 2021, 14, 1776. [Google Scholar] [CrossRef]
- Malode, S.K.; Adware, R.H. Regenerative braking system in electric vehicles. Int. Res. J. Eng. Technol. 2016, 3, 394–400. [Google Scholar]
- Crolla, D.A.; Cao, D. The impact of hybrid and electric powertrains on vehicle dynamics, control systems and energy regeneration. Veh. Syst. Dyn. 2012, 50, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Juda, Z. Regenerative braking vehicles with electric propulsion—Strategies for recovery efficiency and comfort feeling. In Badania pojazdów; Opracowanie Monograficzne: Kraków, Poland, 2014; pp. 49–60. [Google Scholar]
- Popiołek, K.; Detka, T.; Żebrowski, K.; Małek, K. Analysis of Regenerative Braking Strategies. Przegląd Elektrotechniczny 2019, 95, 117–123. [Google Scholar] [CrossRef]
- Xiao, B.; Lu, H.; Wang, H.; Ruan, J.; Zhang, N. Enhanced regenerative braking strategies for electric vehicles: Dynamic performance and potential analysis. Energies 2017, 10, 1875. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.; Walker, P.D.; Watterson, P.A.; Zhang, N. The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle. Appl. Energy 2016, 183, 1240–1258. [Google Scholar] [CrossRef]
- Yabe, T.; Akatsu, K.; Okui, N.; Niikuni, T.; Kawai, T. Efficiency Improvement of Regenerative Energy for an EV. World Electr. Veh. J. 2012, 5, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Maia, R.; Silva, M.; Araújoa, R.; Nunes, U. Electrical vehicle modeling: A fuzzy logic model for regenerative braking. Expert Syst. Appl. 2015, 42, 8504–8519. [Google Scholar] [CrossRef]
- Saradalekshmi, P.R.; Binojkumar, A.C. Combined fuzzy and PI control of regenerative braking system of electric vehicle driven by brushless DC motor. AIP Conf. Proc. 2020, 2222, 040005. [Google Scholar]
- Xu, G.; Li, W.; Xu, K.; Song, Z. An intelligent regenerative braking strategy for electric vehicles. Energies 2011, 4, 1461–1477. [Google Scholar] [CrossRef]
- Sowmya, R.; Ajitha, S.P.; Keerthana, V.; Saranya, M. Fuzzy Logic Control Based Regenerative Braking In Electric Vehicle. Int. J. Soft Comput. Artif. Intell. 2016, 4, 47–49. [Google Scholar]
- Olafsdottir, J.; Lidberg, M.; Falcone, P. Energy Recuperation in Fully Electric Vehicles Subject to Stability and Drivability Requirements. In Proceedings of the 11th International Symposium on Advanced Vehicle Control, Seoul, Korea, 9–12 September 2012. [Google Scholar]
- Xu, G.; Xu, K.; Zheng, C.; Zhang, X.; Zahid, T. Fully Electrified Regenerative Braking Control for Deep Energy Recovery and Maintaining Safety of Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 1186–1198. [Google Scholar] [CrossRef]
- Jansen, S.T.; Alirezaei, M.; Kanarachos, S. Adaptive regenerative braking for electric vehicles with an electric motor at the front axle using the state dependent Riccati equation control technique. WSEAS Trans. Syst. Control Arch. 2014, 9, 424–437. [Google Scholar]
- Oleksowicz, S.A.; Burnham, K.J.; Southgate, A.; McCoy, C.; Waite, G.; Hardwick, G. Regenerative braking strategies, vehicle safety and stability control system: Critical use-case proposals. Veh. Syst. Dyn. 2013, 51, 684–699. [Google Scholar] [CrossRef]
- Itani, K.; De Bernardinis, A.; Khatir, Z.; Jammal, A. Comparison between two braking control methods integrating energy recovery for a two-wheel front driven electric vehicle. Energy Convers. Manag. 2016, 122, 330–343. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, J.; Halim, D. Braking force control strategy for electric vehicles with load variation and wheel slip considerations. IET Electr. Syst. Transp. 2017, 7, 41–47. [Google Scholar] [CrossRef]
- Jurecki, R.S.; Stanczyk, T.L. A Methodology for Evaluating Driving Styles in Various Road Conditions. Energies 2021, 14, 3570. [Google Scholar] [CrossRef]
- Jurecki, R.S.; Stańczyk, T.L.; Ziubiński, M. Analysis of the Structure of Driver Maneuvers in Different Road Conditions. Energies 2022, 15, 7073. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, D. Energy Recovery Strategy Based on Ideal Braking Force Distribution for Regenerative Braking System of a Four-Wheel Drive Electric Vehicle. IEEE Access 2020, 8, 136234–136242. [Google Scholar] [CrossRef]
- Björnsson, L.; Karlsson, S. The potential for brake energy regeneration under Swedish conditions. Appl. Energy 2016, 168, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.avl.com/cruise (accessed on 16 September 2022).
- Cassiano, D.R.; Ribau, J.; Cavalante, F.S.A.; Oliveira, M.L.M.; Silva, C.M. On-board monitoring and simulation of flex fuel vehicles in Brazil. Transp. Res. Procedia 2016, 14, 3129–3138. [Google Scholar] [CrossRef] [Green Version]
- Taborda, A.M.; Varella, R.A.; Farias, T.L.; Duarte, G.O. Evaluation of technological solutions for compliance of environmental legislation in light-duty passenger: A numerical and experimental approach. Transp. Res. Part D Transp. Environ. 2019, 70, 135–146. [Google Scholar] [CrossRef]
- Młodzińska, D.; Szumska, E.; Jurecki, R. Impact of day of a week on traffic flow in Kielce city center. TTS Tech. Transp. Szyn. 2015, 22, 1494–1502. [Google Scholar]
- Młodzińska, D.; Szumska, E.; Jurecki, R. Analysis of the traffic flow on the entrance roads to Kielce. TTS Tech. Transp. Szyn. 2015, 22, 1089–1093. [Google Scholar]
- Szumska, E.; Jurecki, R.; Pawełczyk, M. Evaluation of the use of hybrid electric powertrain system in urban traffic conditions. Eksploat. I Niezawodn.—Maint. Reliab. 2020, 22, 154–160. [Google Scholar] [CrossRef]
- Hartley, J.A.A.; McLellan, R.G.; Richmond, J.; Day, A.J.; Campean, I.F. Regenerative braking system evaluation on a full electric vehicle. In Innovations in Fuel Economy and Sustainable Road Transport; Elsevier: Amsterdam, The Netherlands, 2011; pp. 73–86. [Google Scholar]
- Hartley, J.; Day, A.; Campean, I.; McLellan, R.; Richmond, J. Braking System for a Full Electric Vehicle with Regenerative Braking; SAE Technical Paper; SAE: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Kropiwnicki, J.; Furmanek, M. Analysis of the regenerative braking process for the urban traffic conditions. Combust. Engines 2019, 178, 203–207. [Google Scholar] [CrossRef]
- Mamarikas, S.; Doulgeris, S.; Samaras, Z.; Ntziachristos, L. Traffic impacts on energy consumption of electric and conventional vehicles. Transp. Res. Part D Transp. Environ. 2022, 105, 103231. [Google Scholar] [CrossRef]
- Heydari, S.; Fajri, P.; Lotfi, N.; Falahati, B. Influencing Factors in Low Speed Regenerative Braking Performance of Electric Vehicles. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018. [Google Scholar]
Drivetrain Component | Parameter | Unit | Value |
---|---|---|---|
Electric machine in motor mode | Maximum torque | Nm | 280 |
Maximum power | kW | 80 | |
Speed at maximum power | 1/min | 7000 | |
Speed at maximum torque | 1/min | 0.0001 | |
Electric machine in generator mode | Maximum torque | Nm | 280 |
Maximum power | kW | 75 | |
Speed at maximum power | 1/min | 5250 | |
Speed at maximum torque | 1/min | 3000 | |
Battery | Nominal voltage | V | 320 |
Maximum voltage | V | 420 | |
Minimum voltage | V | 220 | |
Initial charge | % | 95 | |
Maximum charge | Ah | 10 | |
Number of Cell–Rows | - | 5 |
Parameters | Morning Rush Hour | at Noon | Afternoon Rush Hour |
---|---|---|---|
Trip time, s | 2248 | 1805 | 3002 |
Average speed, km/h | 18.1 | 22.5 | 13.6 |
Maximum speed | 59.2 | 56.7 | 52.1 |
Number of stops | 46 | 31 | 73 |
Proportional stoppage time, % | 25 | 17 | 36 |
Urban Road | Suburban Road | Highway Road | |
---|---|---|---|
Length of route, km | 17.2 | 17.1 | 19.2 |
Trip time, s | 2976 | 1064 | 704 |
Average speed, km/h | 20.8 | 57.3 | 102.1 |
Maximum speed, km/h | 67.0 | 84.1 | 122.8 |
Maximum acceleration, m/s2 | 1.8 | 2.9 | 5.0 |
Maximum deceleration, m/s2 | 3.2 | 3.0 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szumska, E.M.; Jurecki, R. The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions. Energies 2022, 15, 9369. https://doi.org/10.3390/en15249369
Szumska EM, Jurecki R. The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions. Energies. 2022; 15(24):9369. https://doi.org/10.3390/en15249369
Chicago/Turabian StyleSzumska, Emilia M., and Rafał Jurecki. 2022. "The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions" Energies 15, no. 24: 9369. https://doi.org/10.3390/en15249369
APA StyleSzumska, E. M., & Jurecki, R. (2022). The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions. Energies, 15(24), 9369. https://doi.org/10.3390/en15249369