Does Price Distortion Affect Energy Efficiency? Evidence from Dynamic Spatial Analytics of China
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Energy Efficiency
3.2. Energy Price Distortions and Other Determinants
3.3. Methodology
4. Estimation Results and Discussion
4.1. Static Spatial Model
4.2. Dynamic Spatial Model
4.3. Short- and Long-Run Effects
4.4. Robustness Checks
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
(Energy Efficiency) | |||
---|---|---|---|
Explanatory Variables | Coefficient | Explanatory Variables | Coefficient |
dist | −0.689 *** | 0.671 *** | |
SOE_l | −0.064 | 0.149 | |
open | −0.006 | 0.083 * | |
stru | −0.089 ** | −0.238 ** | |
GDP_pp | −0.005 | 0.002 | |
tech | −0.010 | 0.017 | |
fiscal | 0.014 | −0.014 | |
urban | −0.146 | −0.344 | |
Effi1t−1 (τ) | 0.691 *** | ||
WEffi1t (δ) | 0.398 *** | ||
WEffi1t−1 (η) | −0.122 | ||
R-squared | 0.993 | ||
Log-likelihood | 695.932 | ||
Wald_spatial_lag | 31.342 *** | ||
Wald_spatial_error | 44.929 *** | ||
(τ + δ + η) | 0.967 |
References
- World Bank. Bringing China’s Energy Efficiency Experience to the World: Knowledge Exchange with Asian Countries; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Shi, X.; Sun, S. Energy price, regulatory price distortion and economic growth: A case study of China. Energy Econ. 2017, 63, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Li, Y.; Tan, Y.; Hou, Y. Energy Price and Energy Efficiency in China: A Linear and Nonlinear Empirical Investigation. Energies 2020, 13, 4068. [Google Scholar] [CrossRef]
- Duncan, R.C. The peak of world oil production and the road to the Olduvai Gorge. In Proceedings of the Pardee Keynote Symposia Geological Society of America Summit, Reno, NV, USA, 13 November 2000. [Google Scholar]
- Mahi, M.; Ismail, I.; Phoong, S.W.; Isa, C.R. Mapping trends and knowledge structure of energy efficiency research: What we know and where we are going. Environ. Sci. Pollut. Res. 2021, 28, 35327–35345. [Google Scholar] [CrossRef] [PubMed]
- Klemick, H.; Wolverton, A. Energy-Efficiency Gap. In Encyclopedia of Energy, Natural Resource, and Environmental Economics; Newnes: Southampton, UK, 2013; Volume 1, pp. 74–81. [Google Scholar]
- Allcott, H.; Greenstone, M. Is there an energy efficiency gap? J. Econ. Perspect. 2012, 26, 3–28. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Qiao, S.; Chen, H.H.; Zhang, R.R. Examining the impact of factor price distortions and social welfare on innovation efficiency from the microdata of Chinese renewable energy industry. Renew. Sustain Energy Rev. 2021, 143, 110901. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, S. Does market-based electricity price affect China’s energy efficiency? Energy Econ. 2020, 91, 104909. [Google Scholar]
- Xu, M.; Tan, R. Removing energy allocation distortion to increase economic output and energy efficiency in China. Energy Policy 2021, 150, 112110. [Google Scholar] [CrossRef]
- Sheng, P.; Yang, J.; Shackman, J.D. Energy’s Shadow Price and Energy Efficiency in China: A Non-Parametric Input Distance Function Analysis. Energies 2015, 8, 1975–1989. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Du, K. Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy 2015, 78, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.; Du, M.; Wang, B.; Chen, Z. Assessment and decomposition of total factor energy efficiency: An evidence based on energy shadow price in China. Sustainability 2016, 8, 408. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, L.W.; Zhou, P. Handling heterogeneity in frontier modelling of city-level energy efficiency: The case of China. Appl. Energy 2020, 279, 115846. [Google Scholar] [CrossRef]
- Li, M.J.; He, Y.L.; Tao, W.Q. Modeling a hybrid methodology for evaluating and forecasting regional energy efficiency in China. Appl. Energy 2017, 185, 1769–1777. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Xu, X.; Failler, P. Does energy price induce China’s green energy innovation? Energies 2020, 13, 4034. [Google Scholar] [CrossRef]
- Lin, B.; Jiang, Z. Estimates of energy subsidies in China and impact of energy subsidy reform. Energy Econ. 2011, 33, 273–283. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Loewenstein, W.; Hasanli, Y. Production linkages and dynamic fiscal employment effects of the extractive industries: Input-output and nonlinear ARDL analyses of Azerbaijani economy. Miner Econ. 2021, 34, 3–18. [Google Scholar] [CrossRef]
- Ziolo, M.; Jednak, S.; Savić, G.; Kragulj, D. Link between energy efficiency and sustainable economic and financial development in OECD countries. Energies 2020, 13, 5898. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Zhang, T.; Wang, L. Revisiting China’s provincial energy efficiency and its influencing factors. Energy 2020, 208, 118361. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO 2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Cheng, G.; Zervopoulos, P.D. Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function. Eur. J. Oper. Res. 2014, 238, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; You, J.; Li, H.; Shao, L. Energy efficiency evaluation based on data envelopment analysis: A literature review. Energies 2020, 13, 3548. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Rohdin, P.; Thollander, P. Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden. Energy 2006, 31, 1836–1844. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Folmer, H.; Ji, M. The drivers of energy intensity in China: A spatial panel data approach. China Econ. Rev. 2014, 31, 351–360. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Introduction to Spatial Econometrics (Statistics, Textbooks and Monographs); CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Atella, V.; Belotti, F.; Depalo, D.; Mortari, A.P. Measuring spatial effects in the presence of institutional constraints: The case of Italian Local Health Authority expenditure. Reg. Sci. Urban Econ. 2014, 49, 232–241. [Google Scholar] [CrossRef]
- Peng, C.; Song, M.; Han, F. Urban economic structure, technological externalities, and intensive land use in China. J. Clean Prod. 2017, 152, 47–62. [Google Scholar] [CrossRef]
- Elhorst, P.; da Silva, D.F.C.; da Mota Silveira Neto, R. A Spatial Economic Model and Spatial Econometric Analysis of Population Dynamics in Brazilian MCAs; Working Paper; European Regional Science Association (ERSA): Louvain-la-Neuve, Belgium, 2015. [Google Scholar]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Niklas, B.; Sadik-Zada, E.R. Income inequality and status symbols: The case of fine wine imports. J. Wine Econ. 2019, 14, 365–373. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Niklas, B. Business Cycles and Alcohol Consumption: Evidence from a Nonlinear Panel ARDL Approach. J. Wine Econ. 2021, 16, 429–438. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Loewenstein, W. Drivers of CO2-Emissions in Fossil Fuel abundant settings:(Pooled) mean group and nonparametric panel analyses. Energies 2020, 13, 3956. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin, Germany, 2014; pp. 20–25. [Google Scholar]
- Lee, L.F.; Yu, J. Estimation of spatial autoregressive panel data models with fixed effects. J. Econom. 2010, 154, 165–185. [Google Scholar] [CrossRef]
n | Mean | SD | Min | p25 | p50 | p75 | Max | |
---|---|---|---|---|---|---|---|---|
Effi | 377 | 0.771 | 0.205 | 0.321 | 0.609 | 0.759 | 1.000 | 1.000 |
dist | 377 | 0.241 | 0.143 | 0.043 | 0.137 | 0.203 | 0.304 | 0.838 |
SOE_l | 377 | 0.608 | 0.124 | 0.269 | 0.517 | 0.609 | 0.716 | 0.837 |
open | 377 | 0.308 | 0.492 | 0.001 | 0.021 | 0.077 | 0.367 | 2.358 |
stru | 377 | 0.393 | 0.077 | 0.274 | 0.349 | 0.383 | 0.411 | 0.779 |
GDP_pp | 377 | 9.324 | 0.817 | 7.169 | 8.666 | 9.306 | 9.910 | 11.278 |
tech | 377 | 8.683 | 1.557 | 4.248 | 7.635 | 8.622 | 9.808 | 12.506 |
fiscal | 377 | 0.215 | 0.162 | 0.079 | 0.135 | 0.174 | 0.228 | 1.287 |
urban | 377 | 0.486 | 0.152 | 0.226 | 0.387 | 0.452 | 0.560 | 0.898 |
(Energy Efficiency) | ||||
---|---|---|---|---|
POLS | Spatial FE | Time FE | Spatial and Time FE | |
dist | 0.567 *** | 0.309 ** | 0.581 *** | 0.316 ** |
SOE_l | −0.040 | −0.019 | 0.054 | 0.034 |
open | 0.045 * | 0.072 | 0.02 | 0.074 |
stru | 0.327 *** | −0.177 | 0.561 *** | −0.029 |
GDP_pp | 0.007 | 0.006 | 0.009 | 0.004 |
tech | 0.034 *** | 0.004 | 0.040 *** | 0.007 |
fiscal | −0.061 | 0.014 | −0.071 | 0.016 |
urban | −0.110 | 0.148 | −0.168 | 0.083 |
Wdist | 0.203 | −0.653 *** | 0.21 | −0.214 |
WSOE_l | 0.841 *** | 0.148 | 0.991 *** | 0.330 |
Wopen | −0.056 | −0.279 *** | −0.167 *** | −0.258 *** |
Wstru | 0.725 *** | 0.414 ** | 1.198 *** | 0.894 *** |
WlnGDP_pp | −0.031 ** | 0.057 *** | −0.030 | 0.055 *** |
Wlntech | −0.066 *** | −0.055 ** | −0.036 ** | −0.033 ** |
Wfiscal | 0.065 | 0.026 | 0.059 | 0.029 |
Wurban | −0.000 | −0.031 | 0.014 | −0.631 |
WEffi | 0.324 *** | 0.151 ** | 0.153 ** | 0.092 |
R-squared | 0.545 | 0.853 | 0.578 | 0.863 |
Log-likelihood | 206.570 | 423.246 | 224.727 | 438.106 |
Wald_spatial_lag | 49.796 *** | 32.117 *** | 53.137 *** | 29.916 *** |
LR_spatial_lag | 46.814 *** | 30.499 *** | 50.292 *** | 32.614 *** |
Wald_spatial_error | 44.730 *** | 32.048 *** | 57.010 *** | 29.800 *** |
LR_spatial_error | 44.978 *** | 31.975 *** | 53.561 *** | 32.682 *** |
(Energy Efficiency) | ||||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Neighbors’ Estimates (WX) | Short Run | Long Run | |||||
Direct Effect | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | |||
dist | −0.299 *** | 0.676 *** | −0.319 *** | 0.685 *** | 0.367 | −1.318 | 2.144 * | 0.827 |
SOE_l | 0.004 | 0.479 *** | −0.012 | 0.585 ** | 0.574 ** | −0.234 | 1.511 *** | 1.277 * |
open | −0.009 | −0.110 * | −0.028 | −0.138 | −0.166 ** | −0.076 | −0.305 | −0.381 * |
stru | −0.141 | 0.618 *** | −0.089 | 0.622 * | 0.534 | −0.502 | 1.671 * | 1.169 |
GDP_pp | 0.004 | 0.032 ** | 0.008 | 0.037 | 0.045 | 0.009 | 0.080 | 0.089 * |
tech | −0.014 | 0.050 | −0.016 | 0.038 | 0.022 | −0.080 | 0.134 | 0.054 |
fiscal | 0.009 | −0.008 | 0.011 | 0.003 | 0.014 | 0.027 | −0.011 | 0.016 |
urban | 0.312 | −0.481 | 0.25 | −0.556 | −0.306 | 1.039 | −1.726 * | −0.687 |
Effit−1 (τ) | 0.648 *** | |||||||
WEffit (δ) | 0.165 ** | |||||||
WEffit−1 (η) | −0.214 * | |||||||
R-squared | 0.911 | |||||||
Log-likelihood | 478.923 | |||||||
Wald_spatial_lag | 23.793 *** | |||||||
Wald_spatial_error | 25.740 *** | |||||||
(τ + δ + η) | 0.599 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Zhang, J.; Xu, Z. Does Price Distortion Affect Energy Efficiency? Evidence from Dynamic Spatial Analytics of China. Energies 2022, 15, 9576. https://doi.org/10.3390/en15249576
Peng C, Zhang J, Xu Z. Does Price Distortion Affect Energy Efficiency? Evidence from Dynamic Spatial Analytics of China. Energies. 2022; 15(24):9576. https://doi.org/10.3390/en15249576
Chicago/Turabian StylePeng, Chong, Jingjing Zhang, and Zhenyu Xu. 2022. "Does Price Distortion Affect Energy Efficiency? Evidence from Dynamic Spatial Analytics of China" Energies 15, no. 24: 9576. https://doi.org/10.3390/en15249576
APA StylePeng, C., Zhang, J., & Xu, Z. (2022). Does Price Distortion Affect Energy Efficiency? Evidence from Dynamic Spatial Analytics of China. Energies, 15(24), 9576. https://doi.org/10.3390/en15249576