Modelling the Energy Production of a Borehole Thermal Energy Storage (BTES) System
Abstract
:1. Introduction
2. Underground Thermal Energy Storage Systems
3. Case Study
4. Ground Response Test (GRT) and Back Analysis from a Real Case Study
4.1. Interpretation of the Field GRT
- t/ts, where t is the time expressed in s;
- ts = H2/9α.
4.2. Back Analysis of the GRT Field Test, through Numerical Simulations
5. Numerical Model Setup for a BTES Plant
5.1. Geometrical Model
5.2. Geological Model
- groundwater level (not detected);
- undisturbed ground temperature (T);
- thermal conductivity of the ground (λ);
- hydraulic conductivity along the three directions (Kxx, Kyy, Kzz);
- porosity (θ).
5.3. Thermo-Technical Model
- (i)
- a contribution to meet the base load through a continuous extraction over 30 days;
- (ii)
- a contribution to meet peak demands through an intermittent energy exploitation.
6. Results
6.1. The Charging Phase
6.2. Continuous Thermal Energy Extraction over 30 Days
6.3. Intermittent Thermal Energy Extraction over 30 Days
7. Discussion
8. Conclusions
- over the first month of continuous heat extraction (base load production), the cumulative energy amounted to 476,000 kWh, leading to a relevant depletion of the warm core; it resulted in a strong decrease in the available thermal power to be used for the following months (186.95 kW), and thus to a general decrease in the temperature inside the storage core of up to 23 °C, approaching the undisturbed ground temperature of 14 °C;
- if the heat extraction is planned for only some hours per day (peak load), the energy produced and usable for heating buildings is lower compared to when it is extracted continuously. It corresponded to 63,600 kWh, meaning a gradual reduction in the storage volume which maintains the original circular configuration. This means a greater amount of available thermal power to be exploited for heating purposes (725.36 kW) than the previous case. Therefore, the ground temperature at the warm core maintains high values at the end of the first month of extraction, recording a temperature difference of only 23.8 °C from the original storage temperature of 70 °C.
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Global Electricity Demand is Growing Faster than Renewables, Driving Strong Increase in Generation from Fossil Fuels. 2021. Available online: https://www.iea.org/news/global-electricity-demand-is-growing-faster-than-renewables-driving-strong-increase-in-generation-from-fossil-fuels (accessed on 31 October 2022).
- UNFCC. The Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 31 October 2022).
- UNFCCC. Global Climate Action at COP26. 2021. Available online: https://unfccc.int/climate-action/gca-events/global-climate-action-at-cop-26 (accessed on 31 October 2022).
- UNFCCC. Nationally Determined Contributions (NDCs); The Paris Agreement and NDCs (2022), United Nations Framework Convention on Climate Change. 2022. Available online: https://unfccc.int/ndc-information/nationally-determined-contributions-ndcs (accessed on 31 October 2022).
- IEA. Defying Expectations, CO2 Emissions from Global Fossil Fuel Combustion are Set to Grow in 2022 by only a Fraction of Last Year’s Big Increase. 2022. Available online: https://www.iea.org/news/defying-expectations-co2-emissions-from-global-fossil-fuel-combustion-are-set-to-grow-in-2022-by-only-a-fraction-of-last-year-s-big-increase (accessed on 9 November 2022).
- European Commission, 2019. A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 9 November 2022).
- Goetlz, G.; Zosseder, K.; Vranjes, A.; Schifflechner, C.; Chicco, J.; Singh, R.M. Geothermal Heating and Cooling Networks for Green and Livable Urban Transformations—Part I, Sustainable European Cities and Digitization. Eur. Now J. 2021. Available online: https://www.europenowjournal.org/2021/05/10/geothermal-heating-and-cooling-networks-for-green-and-livable-urban-transformations-part-i/ (accessed on 4 November 2022).
- Heat Road Map Europe. Available online: https://heatroadmap.eu (accessed on 4 November 2022).
- Mathiesen, B.V.; Bertelsen, N.; Schneider, N.; Sánchez-García, L.; Paardekooper, S.; Thellufsen, J.Z.; Djørup, S.R. Towards a Decarbonized Heating and Cooling Sector in Europe: Unlocking the Potential of Energy Efficiency and District Energy; Report; Department of Planning, Aalborg University: Aalborg, Denmark, 2019. [Google Scholar]
- Chicco, J.M.; Antonijevic, D.; Bloemendal, M.; Cecinato, F.; Goetzl, G.; Hajto, M.; Hartog, N.; Mandrone, G.; Vacha, D.; Vardon, P.J. Improving the Efficiency of District Heating and Cooling Using a Geothermal Technology: Underground Thermal Energy Storage (UTES). In New Metropolitan Perspectives; Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J., Eds.; NMP 2022; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 482, pp. 1699–1710. [Google Scholar] [CrossRef]
- IEA. Very Large Thermal Energy Storage for Renewable Districts. 2021. Available online: https://www.iea.org/articles/very-large-thermal-energy-storage-for-renewable-districts (accessed on 31 October 2022).
- Reuss, M. The use of borehole thermal energy storage (BTES) systems. In Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 117–147. [Google Scholar] [CrossRef]
- Skarphagen, H.; Banks, D.; Frengstad, B.S.; Gether, H. Design Considerations for Borehole Thermal Energy Storage (BTES): A Review with Emphasis on Convective Heat Transfer. Geofluids 2019, 2019, 1–26. [Google Scholar] [CrossRef]
- Lanahan, M.; Tabares-Velasco, P.C. Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency. Energies 2017, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Catolico, N.; Ge, S.; McCartney, J.S. Numerical Modeling of a Soil-Borehole Thermal Energy Storage System. Vadose Zone J. 2016, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Boockmeyer, A. Numerical Simulation of Borehole Thermal Energy Storage in the Geological Subsurface. Ph.D. Thesis, Faculty of Mathematics and Natural Sciences at the Christian Albrechts University, Kiel, Germany, 2020. Available online: https://macau.uni-kiel.de/receive/macau_mods_00000629 (accessed on 4 November 2022).
- Formhals, J.; Hemmatabady, H.; Welsch, B.; Schulte, D.; Sass, I. A Modelica Toolbox for the Simulation of Borehole Thermal Energy Storage Systems. Energies 2020, 13, 2327. [Google Scholar] [CrossRef]
- Colucci, R.R.; Monegato, G.; Žebre, M. Glacial and proglacial deposits of the Resia Valley (NE Italy): New insights on the onset and decay of the last alpine glacial maximum in the Julian Alps. Alp. Mediterr. Quat. 2014, 27, 85–104. Available online: https://amq.aiqua.it/index.php/amq/article/view/75 (accessed on 4 November 2022).
- Dosio, A.; Galmarini, S.; Graziani, G. Simulation of the circulation and related photochemical ozone dispersion in the Po plains (northern Italy): Comparison with the observations of a measuring campaign. J. Geophys. Res. Atmos. 2002, 107, LOP-2. [Google Scholar] [CrossRef]
- Viganò, A.; Zampieri, D.; Rossato, S.; Martin, S.; Selli, L.; Prosser, G.; Ivy-Ochs, S.; Campedel, P.; Fedrizzi, F.; Franceschi, M.; et al. Past to present deformation of the central-eastern Southern Alps: From the foreland to the Giudicarie belt. Geol. F. Trips Maps 2017, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Scardia, G.; Festa, A.; Monegato, G.; Pini, R.; Rogledi, S.; Tremolada, F.; Galadini, F. Evidence for late Alpine tectonics in the Lake Garda area (northern Italy) and seismogenic implications. GSA Bull. 2015, 127, 113–130. [Google Scholar] [CrossRef]
- Zuccari, C.; Vignaroli, G.; Viola, G. Geological map of the San Donato—Costa Thrust Zone, Belluno Thrust System, eastern Southern Alps (northern Italy). J. Maps 2021, 17, 337–347. [Google Scholar] [CrossRef]
- Cozzi, A. Synsedimentary tensional features in Upper Triassic shallow-water platform carbonates of the Carnian Prealps (northern Italy) and their importance as palaeostress indicators. Basin Res. 2000, 12, 133–146. [Google Scholar] [CrossRef]
- Monaco, P.; Giannetti, A. Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy). Facies 2002, 47, 57–82. [Google Scholar] [CrossRef]
- Masetti, D.; Figus, B.; Jenkyns, H.C.; Barattolo, F.; Mattioli, E.; Posenato, R. Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: Evidence from the Southern Alps (Northern Italy). Geol. Mag. 2017, 154, 625–650. [Google Scholar] [CrossRef]
- Castellarin, A.; Vai, G.B.; Cantelli, L. The Alpine evolution of the Southern Alps around the Giudicarie faults: A Late Cretaceous to Early Eocene transfer zone. Tectonophysics 2006, 414, 203–223. [Google Scholar] [CrossRef]
- Carminati, E.; Cavazza, D.; Scrocca, D.; Fantoni, R.; Scotti, P.; Doglioni, C. Thermal and tectonic evolution of the southern Alps (northern Italy) rifting: Coupled organic matter maturity analysis and thermokinematic modeling. AAPG Bull. 2010, 94, 369–397. [Google Scholar] [CrossRef]
- Fleischmann, S.; Picotti, V.; Rugenstein, J.K.C.; Cobianchi, M.; Bernasconi, S.M. Effects of the Pliensbachian–Toarcian Boundary Event on Carbonate Productivity of a Tethyan Platform and Slope. Paleoceanogr. Paleoclimatology 2022, 37, e2021PA004392. [Google Scholar] [CrossRef]
- Fredi, P.; Palmieri, E.L. Morphological Regions of Italy. In Landscapes and Landforms of Italy. World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 39–74. [Google Scholar] [CrossRef]
- Francani, V.; Gattinoni, P. Hydrogeological aspects of Lombard Prealps karstification (northern Italy). Ital. J. Eng. Geol. Environ. 2009, 1, 117–135. [Google Scholar] [CrossRef]
- Calligaris, C.; Boschin, W.; Cucchi, F.; Zini, L. The karst hydrostructure of the Verzegnis group (NE Italy). Carbonates Evaporites 2016, 31, 407–420. [Google Scholar] [CrossRef]
- Eklöf, C.; Gehlin, S. Ted-a Mobile Equipment for Thermal Response Test: Testing and Evaluation. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 1996; pp. 1–62. Available online: http://www.diva-portal.org/smash/get/diva2:1032479/FULLTEXT01.pdf (accessed on 4 November 2022).
- Mogensen, P. Fluid to duct wall heat transfer in duct system heat storages. In Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6–8 June 1983; pp. 652–657. [Google Scholar]
- Raymond, J.; Mercier, S.; Nguyen, L. Designing coaxial ground heat exchangers with a thermally enhanced outer pipe. Geotherm. Energy 2015, 3, 7. [Google Scholar] [CrossRef]
- Javed, S.; Spitler, J. Calculation of Borehole Thermal Resistance. In Advances in Ground-Source Heat Pump Systems; Woodhead Publishing: Cambridge, UK, 2016; Volume 1, pp. 63–95. ISBN 9780081003114. [Google Scholar]
- Claesson, J.; Dunand, A. Heat Extraction from the Ground by Horizontal Pipes: A Mathematical Analysis; BFR Documents; Byggforskningsrådet (BFR): Stockholm, Sweden, 1983; Available online: https://lucris.lub.lu.se/ws/portalfiles/portal/4375488/8146470 (accessed on 4 November 2022).
- Chicco, J.M.; Mandrone, G. How a sensitive analysis on the coupling geology and borehole heat exchanger characteristics can improve the efficiency and production of shallow geothermal plants. Heliyon 2022, 8, e09545. [Google Scholar] [CrossRef]
- Diersch, H.-J.G. Using and testing the algebraic multigrid equation solver SAMG in FEFLOW. FEFLOW White Pap. 2009, 3, 25–36. [Google Scholar]
- Sibbitt, B.; McClenahan, D. Seasonal Borehole Thermal Energy Storage—Guidelines for Design & Construction. International Energy Agency—Solar Heating & Cooling Programme 2015. pp. 1–15. Available online: https://task45.iea-shc.org/data/sites/1/publications/IEA-SHCT45.B.3.1-TECH-Seasonal-storages-Borehole-Guidelines.pdf (accessed on 4 November 2022).
- Yang, T.; Liu, W.; Kramer, G.J.; Sun, Q. Seasonal thermal energy storage: A techno-economic literature review. Renew. Sustain. Energy Rev. 2021, 139, 110732. [Google Scholar] [CrossRef]
- Xu, L.; Torrens, J.I.; Guo, F.; Yang, X.; Hensen, J.L. Application of large underground seasonal thermal energy storage in district heating system: A model-based energy performance assessment of a pilot system in Chifeng, China. Appl. Therm. Eng. 2018, 137, 319–328. [Google Scholar] [CrossRef]
- Panno, D.; Buscemi, A.; Beccali, M.; Chiaruzzi, C.; Cipriani, G.; Ciulla, G.; Di Dio, V.; Brano, V.L.; Bonomolo, M. A solar assisted seasonal borehole thermal energy system for a non-residential building in the Mediterranean area. Sol. Energy 2019, 192, 120–132. [Google Scholar] [CrossRef]
- Gehlin, S.E.A.; Hellstrom, G. Comparison of Four Models for Thermal Response Test Evaluation. ASHRAE Trans. Atlanta 2003, 109, 131. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A991442&dswid=-3191 (accessed on 4 November 2022).
- Loveridge, F.; Holmes, G.; Roberts, T.; Powrie, W. Thermal response testing through the Chalk aquifer in London, UK. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Guo, Z.; Liu, Y.; Cong, X.; Peng, D. A review on thermal response test of ground-coupled heat pump systems. Renew. Sustain. Energy Rev. 2014, 40, 851–867. [Google Scholar] [CrossRef]
- Li, P.; Guo, F.; Yang, X. An inversion method to estimate the thermal properties of heterogeneous soil for a large-scale borehole thermal energy storage system. Energy Build. 2022, 263, 112045. [Google Scholar] [CrossRef]
- Kuosa, M.; Rahiala, S.; Tallinen, K.; Mäkilä, T.; Lampinen, M.; Lahdelma, R.; Pulkkinen, L. Mass flow controlled district heating with an extract air heat pump in apartment buildings: A practical concept study. Appl. Therm. Eng. 2019, 157, 113745. [Google Scholar] [CrossRef]
Tf(t) | Average fluid temperature (Tin and Tout) depending on the test time, expressed in °C |
Q | Injected power per unit of length and time, expressed in W and derived from: q = Q/H (where H is the drilling depth) |
π | Equal to 3.14 |
λ | Ground thermal conductivity, expressed in W*m−1K−1 |
γ | Euler’s constant equal to 0.5772 |
α | Thermal diffusivity, expressed in m2/s |
t | Test time, expressed in s |
r | Borehole radius, expressed in m |
Rb | Thermal resistance of the ground/fluid/pipe system, expressed in K/(W/m) |
Tg | Undisturbed temperature, expressed in °C |
Lithology | Depth (m) | Hydraulic Conductivity (K, m/d) | Porosity (θ, %) | Temperature (°C) | Groundwater Level (m) |
---|---|---|---|---|---|
Sandy, clayey sediments | From 0 to −15 | 0.864 | 30 | 14 | −100 |
Marly limestones | From −15 to −25 | 0.864 | 5 | 14 | −100 |
Limestone | From −15 to −100 | 0.0864 | 5 | 14 | −100 |
Test | Tin (°C) | Tout (°C) | λ (W*m−1K−1) | Lithologies |
---|---|---|---|---|
GRT | 36.0 | 31.5 | 2.52 | All domains |
Back analysis 1 | 36.1 | 31.5 | 0.37 | Sandy clay |
1.37 | Marly limestone | |||
2.67 | Limestone | |||
Back analysis 2 | 36.2 | 31.5 | 0.38 | Sandy clay |
1.38 | Marly limestone | |||
2.68 | Limestone | |||
Back analysis 3 | 38.6 | 35.8 | 0.42 | Sandy clay |
1.42 | Marly limestone | |||
2.72 | Limestone |
Pipe Configuration | L (m) | din (m) | bin (m) | dout (m) | bout (m) | D (m) | λin (W*m−1K−1) | λout (W*m−1K−1) |
---|---|---|---|---|---|---|---|---|
Double U | 60 | 0.026 | 0.0023 | 0.032 | 0.0029 | 0.15 | 0.42 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chicco, J.M.; Mandrone, G. Modelling the Energy Production of a Borehole Thermal Energy Storage (BTES) System. Energies 2022, 15, 9587. https://doi.org/10.3390/en15249587
Chicco JM, Mandrone G. Modelling the Energy Production of a Borehole Thermal Energy Storage (BTES) System. Energies. 2022; 15(24):9587. https://doi.org/10.3390/en15249587
Chicago/Turabian StyleChicco, Jessica Maria, and Giuseppe Mandrone. 2022. "Modelling the Energy Production of a Borehole Thermal Energy Storage (BTES) System" Energies 15, no. 24: 9587. https://doi.org/10.3390/en15249587
APA StyleChicco, J. M., & Mandrone, G. (2022). Modelling the Energy Production of a Borehole Thermal Energy Storage (BTES) System. Energies, 15(24), 9587. https://doi.org/10.3390/en15249587