Heat Transfer Potential of Unidirectional Porous Tubes for Gas Cooling under High Heat Flux Conditions
Abstract
:1. Introduction
2. Prediction of Effective Thermal Conductivity of Sintered Copper-Particles by Direct Numerical Simulation of Heat Conduction
2.1. Procedure for Evaluating Effective Thermal Conductivity of Porous Medium
2.2. Effective Thermal Conductivity of Sintered Copper-Particles
3. Heat Transfer Potential of Unidirectional Porous Copper Tube of Gas Flow
Heat Transfer Correlation of Gas Flow in Unidirectional Porous Tubes Fabricated by Explosive Compression Technology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raffray, A.R.; Schlosser, J.; Akiba, M.; Araki, M.; Chiocchio, S.; Driemeyer, D.; Escourbiac, F.; Grigoriev, S.; Merola, M.; Tivey, R. Critical heat flux analysis and R&D for the design of the ITER divertor. Fusion Eng. Des. 1999, 45, 377–407. [Google Scholar]
- Araki, M.; Sato, K.; Suzuki, S.; Akiba, M. Critical-heat-flux experiment on the screw tube under one-sided-heating conditions. Fusion Technol. 1996, 29, 519–528. [Google Scholar] [CrossRef]
- Boscary, J.; Araki, M.; Suzuki, S.; Ezato, K.; Akiba, M. Critical heat flux in subcooled water flow of one-side-heated screw tubes. Fusion Technol. 1999, 35, 289–296. [Google Scholar] [CrossRef]
- Ezato, K.; Suzuki, S.; Sato, K.; Akiba, M. Thermal fatigue experiment of screw cooling tube under one-sided heating condition. J. Nucl. Mater. 2004, 329, 820–824. [Google Scholar] [CrossRef]
- Toda, S.; Ebara, S.; Hashizume, H. Development of an advanced cooling device using porous media with active boiling flow counter to high heat flux. Fundamental study on high heat flux removal system using evaporated fluid in metal porous media. In Proceedings of the 11th International Heat Transfer Conferences (IHTC11), Kyongju, Korea, 23–28 August 1998; pp. 503–508. [Google Scholar]
- Yuki, K.; Hashizume, H.; Toda, S. Sub-channels-inserted porous evaporator for efficient divertor cooling. Fusion Sci. Technol. 2011, 60, 238–242. [Google Scholar] [CrossRef]
- Yuki, K.; Hashizume, H.; Toda, S.; Sagara, A. Divertor cooling with sub-channels-inserted metal porous media. Fusion Sci. Technol. 2013, 64, 325–330. [Google Scholar] [CrossRef]
- Takai, K.; Yuki, K.; Sagara, A. Heat transfer performance of EVAPORON-3 developed for an enlarged heat transfer surface of divertor. Plasma Fusion Res. 2017, 12, 1405015. [Google Scholar] [CrossRef] [Green Version]
- Takai, K.; Yuki, K.; Yuki, K.; Kibushi, R.; Unno, N. Heat transfer performance of an energy-saving heat removal device with uni-directional porous copper for divertor cooling. Fusion Eng. Des. 2018, 136 Pt A, 518–521. [Google Scholar] [CrossRef]
- Raffray, A.R.; Malang, S.; Wang, X. Optimizing the overall configuration of a He-cooled W-alloy divertor for a power plant. Fusion Eng. Des. 2009, 84, 1553–1557. [Google Scholar] [CrossRef]
- Yoda, M.; Abdel-Khalik, S.I.; Sadowski, D.L.; Mills, B.H.; Rader, J.D. Experimental evaluation of the thermal-hydraulics of helium-cooled divertors. Fusion Sci. Technol. 2015, 67, 142–157. [Google Scholar] [CrossRef]
- Yoda, M.; Abdel-Khalik, S.I. Overview of thermal hydraulics of helium-cooled solid divertors. Fusion Sci. Technol. 2017, 72, 285–293. [Google Scholar] [CrossRef]
- Zhao, B.B.B.; Musa, S.; Abdel-Khalik, S.; Yoda, M. Experimental and numerical studies of helium-cooled modular divertors with multiple jets. Fusion Eng. Des. 2018, 136, 67–71. [Google Scholar] [CrossRef]
- Yokomine, T.; Oohara, K.; Kunugi, T. Experimental investigation on heat transfer of HEMJ type divertor with narrow gap between nozzle and impingement surface. Fusion Eng. Des. 2016, 109, 1543–1548. [Google Scholar] [CrossRef]
- Ji, W.-T.; Jacobi, A.M.; He, Y.-L.; Tao, W.-Q. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow. Int. J. Heat Mass Transf. 2017, 111, 467–483. [Google Scholar] [CrossRef]
- Hermsmeyer, S.; Malang, S. Gas-cooled high performance divertor for a power plant. Fusion Eng. Des. 2002, 61–62, 197–202. [Google Scholar] [CrossRef]
- Sharafat, S.; Mills, A.; Youchison, D.; Nygren, R.; Williams, B.; Ghoniem, N. Ultra low pressure-drop helium-cooled porous-tungsten PFC. Fusion Sci. Technol. 2007, 52, 559–565. [Google Scholar] [CrossRef]
- Sharafat, S.; Aoyama, A.T.; Ghoniem, N.; Williams, B. Design and fabrication of a rectangular he-cooled refractory foam hx-channel for divertor applications. Fusion Sci. Technol. 2011, 60, 208–212. [Google Scholar] [CrossRef]
- Yuki, K.; Kawamoto, M.; Hattori, M.; Suzuki, K.; Sagara, A. Gas-cooled divertor concept with high thermal conductivity porous media. Fusion Sci. Technol. 2015, 61, 197–202. [Google Scholar] [CrossRef]
- Takarazawa, S.; Ushijima, K.; Fleischhauer, R.; Kato, J.; Terada, K.; Cantwell, W.J.; Kaliske, M.; Kagaya, S.; Hasumoto, S. Heat-transfer and pressure drop characteristics of micro-lattice materials fabricated by selective laser metal melting technology. Heat Mass Transf. 2022, 58, 125–141. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Teyber, R.; da Silveira, P.S.; Scharf, F.; Schillo, S.M.; Niknia, I.; Govindappa, P.; Christiaanse, T.V.; Rowe, A. Thermal-hydraulic evaluation of 3D printed microstructures. Appl. Therm. Eng. 2019, 160, 113990. [Google Scholar] [CrossRef]
- Elkholy, A.; Kempers, R. Enhancement of pool boiling heat transfer using 3D-printed polymer fixtures. Exp. Therm. Fluid Sci. 2020, 114, 110056. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, H.; Lin, G.; Jin, H.; Shen, X.; He, J.; Miao, J. Thermal performance of a 3D printed lattice-structure heat sink packaging phase change material. Chin. J. Aeronaut. 2021, 34, 373–385. [Google Scholar] [CrossRef]
- Hu, X.; Gong, X. Experimental study on the thermal response of PCM-based heat sink using structured porous material fabricated by 3D printing. Case Stud. Therm. Eng. 2021, 24, 100844. [Google Scholar] [CrossRef]
- Liang, D.; He, G.; Chen, W.; Chen, Y.; Chyu, M.K. Fluid flow and heat transfer performance for micro-lattice structures fabricated by Selective Laser Melting. Int. J. Therm. Sci. 2022, 172, 107312. [Google Scholar] [CrossRef]
- Hokamoto, K.; Vesenjak, M.; Ren, Z. Fabrication of cylindrical uni-directional porous metal with explosive compaction. Mater. Lett. 2014, 137, 323–327. [Google Scholar] [CrossRef]
- Ogushi, T.; Chiba, H.; Nakajima, H.; Ikeda, T. Measurement and analysis of effective thermal conductivities of lotus-type porous copper. J. Appl. Phys. 2004, 95, 5843–5847. [Google Scholar] [CrossRef]
- Fiedler, T.; Borovinšek, M.; Hokamoto, K.; Vesenja, M. High-performance thermal capacitors made by explosion forming. Int. J. Heat Mass Transf. 2014, 83, 366–371. [Google Scholar] [CrossRef]
- Yuki, K.; Sato, Y.; Kibushi, R.; Unno, N.; Suzuki, K.; Tomimura, T.; Hokamoto, K. Heat transfer performance of porous copper pipe with uniformly-distributed holes fabricated by explosive welding technique. In Proceedings of the 27th International Symposium on Transport Phenomena (ISTP27), Honolulu, HI, USA, 20–23 September 2016. ISTP27-126. [Google Scholar]
- Sato, Y.; Yuki, K.; Abe, Y.; Kibushi, R.; Unno, N.; Hokamoto, K.; Tanaka, S.; Tomimura, T. Heat transfer characteristics of a gas flow in uni-directional porous copper pipes. In Proceedings of the 16th International Heat Transfer Conference (IHTC16), Beijing, China, 10–15 August 2018; pp. 8189–8193. [Google Scholar]
- Kibushi, R.; Yuki, K.; Unno, N.; Tanaka, S.; Hokamoto, K. Heat transfer and pressure drop correlations for a gas flow in unidirectional porous copper tubes fabricated by explosive compaction. Int. J. Heat Mass Transf. 2022. submitted. [Google Scholar]
#1 | #2 | #3 | #4 | #5 | #6 | |
---|---|---|---|---|---|---|
Length (mm) | 470 | 455 | 340 | 475 | 450 | 440 |
Number of pore | 40 | 40 | 40 | 21 | 13 | 9 |
Pore size (mm) | 1.69 | 2.16 | 2.71 | 2.60 | 3.51 | 4.61 |
Porosity (%) | 35.5 | 57.7 | 81.3 | 44.2 | 49.5 | 59.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuki, K.; Kibushi, R.; Kubota, R.; Unno, N.; Tanaka, S.; Hokamoto, K. Heat Transfer Potential of Unidirectional Porous Tubes for Gas Cooling under High Heat Flux Conditions. Energies 2022, 15, 1042. https://doi.org/10.3390/en15031042
Yuki K, Kibushi R, Kubota R, Unno N, Tanaka S, Hokamoto K. Heat Transfer Potential of Unidirectional Porous Tubes for Gas Cooling under High Heat Flux Conditions. Energies. 2022; 15(3):1042. https://doi.org/10.3390/en15031042
Chicago/Turabian StyleYuki, Kazuhisa, Risako Kibushi, Ryohei Kubota, Noriyuki Unno, Shigeru Tanaka, and Kazuyuki Hokamoto. 2022. "Heat Transfer Potential of Unidirectional Porous Tubes for Gas Cooling under High Heat Flux Conditions" Energies 15, no. 3: 1042. https://doi.org/10.3390/en15031042
APA StyleYuki, K., Kibushi, R., Kubota, R., Unno, N., Tanaka, S., & Hokamoto, K. (2022). Heat Transfer Potential of Unidirectional Porous Tubes for Gas Cooling under High Heat Flux Conditions. Energies, 15(3), 1042. https://doi.org/10.3390/en15031042