Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources
Abstract
:1. Introduction
1.1. General Context
1.2. Previous Studies and Current Gaps
1.3. Novelty and Contributions
- We present a review and discussion of the most relevant literature on the development of virtual power plants, as well as an analysis on the general concepts and applications. A definition of VPP is proposed and argued.
- We present and review the main projects around the world with practical virtual power plant implementations.
- The general structure of a smart grid with virtual power plants is proposed, based on an operational bottom-up scheme, through smart energy management systems. In this proposal, the virtual power plant acquires the specific role of “integrating agent” and participates, in a fundamental way, in the management of DERs.
- As an energy management mechanism, the general architecture for the operation of a “Net Zero Energy Grid” is proposed, seeking to achieve neutrality between the energy produced and required through virtual power plants.
- The virtual power plant concept is adapted to the coordination architecture between system agents for participation in five market models for energy, power reserve and ancillary services.
- Finally, the current challenges that must be overcome for the large-scale implementation of these systems are identified and discussed, to achieve an energy transition towards a new smart system that is decentralized, safe and efficient.
2. Applications and Development of VPPs
2.1. Definition and Scope of VPPs
- A VPP is an alternative for the management of DERs in the electricity system, which operates based on the concept of the “virtual cloud”. Its specific role is visibility and the technical and commercial integration of DERs in EPS.
- It is capable of grouping and managing the technical potential of different DERs (microgrids included), regardless of the voltage level at which they are interconnected with the network and without a geographical restriction between the elements.
- It is modeled as a single virtual element associated with the distribution network to guarantee a safe, efficient, cooperative and complementary operation between its elements, both in commercial and technical aspects.
- The VPP has the capacity to participate in the electricity market as a manager of controllable loads and as a provider of energy, power reserve and ancillary services.
2.2. Classification of VPPs and Participation in the Electricity Markets
2.3. Demonstrative Projects
3. VPPs as a Strategy for the Management of DERs
3.1. Management and Operation of DERs
3.2. VPPs for Energy Management through a Bottom-Up Operational Scheme
3.3. Application of the Bottom-Up Operational Scheme for the Management of Net Zero Energy Grids
4. Coordination Strategies between Power System Participants for the Integration of DERs
4.1. Coordination Architectures between Aggregators and System Operators
4.2. Coordination Strategies between Aggregators and System Operators
4.3. Comparison of Coordination Strategies
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Oureilidis, K.; Malamaki, K.-N.; Gallos, K.; Tsitsimelis, A.; Dikaiakos, C.; Gkavanoudis, S.; Cvetkovic, M.; Mauricio, J.M.; Ortega, J.M.M.; Ramos, J.L.M.; et al. Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers. Energies 2020, 13, 917. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency IEA. Data and Statistics. CO2 Emissions from Electricity and Heat by Energy Source, World 1990–2018. Available online: https://www.iea.org/data-and-statistics (accessed on 19 November 2019).
- CSIRO and Energy Networks Australia. Electricity Network Transformation Roadmap: Final Report. 2017. Available online: https://www.energynetworks.com.au/resources/reports/electricity-network-transformation-roadmap-final-report (accessed on 1 November 2021).
- Strasser, T.; Andren, F.; Kathan, J.; Cecati, C.; Buccella, C.; Siano, P.; Leitão, P.; Zhabelova, G.; Vyatkin, V.; Vrba, P.; et al. A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems. IEEE Trans. Ind. Electron. 2015, 62, 2424–2438. [Google Scholar] [CrossRef] [Green Version]
- Christakou, K. A unified control strategy for active distribution networks via demand response and distributed energy storage systems. Sustain. Energy Grids Netw. 2016, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lezama, F.; Soares, J.; Canizes, B.; Vale, Z. Flexibility management model of home appliances to support DSO requests in smart grids. Sustain. Cities Soc. 2020, 55, 102048. [Google Scholar] [CrossRef]
- Angelino, R.; Carpinelli, G.; Proto, D.; Bracale, A. Dispersed generation and storage systems for providing ancillary services in distribution systems. SPEEDAM 2010, 2010, 343–351. [Google Scholar] [CrossRef]
- Gomes, M.; Saraiva, J.T. Allocation of reactive power support, active loss balancing and demand interruption ancillary services in MicroGrids. Electr. Power Syst. Res. 2010, 80, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, K. Demand Response in Electric Systems: Its Contribution to Regulation Reserves and Its Role in Aggregating Distributed Energy Resourses; Comillas Pontifical University: Madrid, Spain, 2014. [Google Scholar]
- Barragán, L.A.A.; Trujillo, E.R.; Santamaria, F. Agente Integrador de Recursos Energéticos Distribuidos como Oferente de Energía en el Nivel de Distribución. Ingeniería 2017, 22, 306. [Google Scholar] [CrossRef] [Green Version]
- Gerard, H.; Puente, E.I.R.; Six, D. Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework. Util. Policy 2018, 50, 40–48. [Google Scholar] [CrossRef]
- Pudjianto, D.; Ramsay, C.; Strbac, G. Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener. 2007, 1, 10–16. [Google Scholar] [CrossRef]
- Dielmann, K.; van der Velden, A. Virtual power plants (VPP)—A new perspective for energy generation? In Proceedings of the 9th International Scientific and Practical Conference of Students, Post-graduates Modern Techniques and Technologies, Tomsk, Russia, 7–11 April 2003; pp. 18–20. [Google Scholar]
- Ringler, P.; Keles, D.; Fichtner, W. Agent-based modelling and simulation of smart electricity grids and markets—A literature review. Renew. Sustain. Energy Rev. 2016, 57, 205–215. [Google Scholar] [CrossRef]
- Basu, A.K.; Chowdhury, S.; Paul, S. Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey. Renew. Sustain. Energy Rev. 2011, 15, 4348–4356. [Google Scholar] [CrossRef]
- Asmus, P. Microgrids, Virtual Power Plants and Our Distributed Energy Future. Electr. J. 2010, 23, 72–82. [Google Scholar] [CrossRef]
- Lasseter, R.H. Microgrids and Distributed Generation. Intell. Autom. Soft Comput. 2010, 16, 225–234. [Google Scholar] [CrossRef]
- Soshinskaya, M.; Crijns-Graus, W.; Guerrero, J.; Vasquez, J.C. Microgrids: Experiences, barriers and success factors. Renew. Sustain. Energy Rev. 2014, 40, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Z.; Zhang, H.; Zhao, Y.; Shi, J.; Ding, H. A Review on Virtual Power Plant Concept, Application and Challenges. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; Volume 2020, pp. 4328–4333. [Google Scholar]
- Yavuz, L.; Önen, A.; Muyeen, S.; Kamwa, I. Transformation of microgrid to virtual power plant—A comprehensive review. IET Gener. Transm. Distrib. 2019, 13, 1994–2005. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Hooshmand, R.-A.; Gholipour, E. A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renew. Sustain. Energy Rev. 2017, 67, 341–363. [Google Scholar] [CrossRef]
- Ullah, S.; Haidar, A.M.; Hoole, P.; Zen, H.; Ahfock, T. The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. J. Clean. Prod. 2020, 273, 122777. [Google Scholar] [CrossRef]
- Camarinha-Matos, L.M. Collaborative smart grids—A survey on trends. Renew. Sustain. Energy Rev. 2016, 65, 283–294. [Google Scholar] [CrossRef]
- Adu-Kankam, K.O.; Camarinha-Matos, L.M. Towards collaborative Virtual Power Plants: Trends and convergence. Sustain. Energy Grids Netw. 2018, 16, 217–230. [Google Scholar] [CrossRef]
- Guzman, C.P.; Arias, N.B.; Franco, J.F.; Rider, M.J.; Romero, R. Enhanced Coordination Strategy for an Aggregator of Distributed Energy Resources Participating in the Day-Ahead Reserve Market. Energies 2020, 13, 1965. [Google Scholar] [CrossRef] [Green Version]
- Dupont, B.; Dietrich, K.; De Jonghe, C.; Ramos, A.; Belmans, R. Impact of residential demand response on power system operation: A Belgian case study. Appl. Energy 2014, 122, 1–10. [Google Scholar] [CrossRef]
- Reilly, J.T. From microgrids to aggregators of distributed energy resources. The microgrid controller and distributed energy management systems. Electr. J. 2019, 32, 30–34. [Google Scholar] [CrossRef]
- Yi, Z.; Xu, Y.; Wang, H.; Sang, L. Coordinated Operation Strategy for a Virtual Power Plant with Multiple DER Aggregators. IEEE Trans. Sustain. Energy 2021, 12, 2445–2458. [Google Scholar] [CrossRef]
- Samadi, A.; Saidi, H.; Latify, M.A.; Mahdavi, M. Home energy management system based on task classification and the resident’s requirements. Int. J. Electr. Power Energy Syst. 2020, 118, 105815. [Google Scholar] [CrossRef]
- Reilly, J.; Joos, G. Integration and Aggregation of Distributed Energy Resources-Operating Approaches, Standards and Guidelines; AIM: Palm Harbor, FL, USA, 2019; pp. 3–6. [Google Scholar]
- Carreiro, A.M.; Jorge, H.M.; Antunes, C.H. Energy management systems aggregators: A literature survey. Renew. Sustain. Energy Rev. 2017, 73, 1160–1172. [Google Scholar] [CrossRef]
- Papavasiliou, A.; Mezghani, I. Coordination Schemes for the Integration of Transmission and Distribution System Operations. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7. [Google Scholar]
- Tohidi, Y.; Farrokhseresht, M.; Gibescu, M. A Review on Coordination Schemes Between Local and Central Electricity Markets. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Madina, C.; Jimeno, J.; Gómez, I.; Pardo, M.; Rossi, M.; Migliavacca, G.; Kuusela, P. Coordinación TSO-DSO para el aprovechamiento de flexibilidad en la red de distribución: Proyecto Smartnet. In Proceedings of the VII Congreso Smart Grids, Madrid, Spain, 16 December 2018. [Google Scholar]
- Awerbuch, S.; Preston, A. The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Tovaglieri, A. Research Collection. Brisk Bin Robust Invariant Scalable Keypoints; ETH Zürich: Zürich, Switzerland, 2003. [Google Scholar] [CrossRef]
- Setiawan, E.A. Concept and Controllability of Virtual Power Plant; Kassel University Press: Kassel, Germany, 2007. [Google Scholar]
- Pudjianto, D.; Ramsay, C.; Strbac, G. Microgrids and virtual power plants: Concepts to support the integration of distributed energy resources. Proc. Inst. Mech. Eng. Part A J. Power Energy 2008, 222, 731–741. [Google Scholar] [CrossRef]
- Kieny, C.; Berseneff, B.; Hadjsaid, N.; Besanger, Y.; Maire, J. On the concept and the interest of virtual power plant: Some results from the European project Fenix. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Lombardi, P.A.; Sokolnikova, T.; Styczynski, Z.; Voropai, N. Virtual Power Plant Management Considering Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2012; Volume 45, pp. 132–137. [Google Scholar]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J. Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation. Renew. Sustain. Energy Rev. 2014, 36, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Paternina, J.L.; Trujillo, E.R.; Anaya, J.P. Integration of Distributed Energy Resources Through a Virtual Power Plant as an Alternative to Micro Grids. An Approach to Smart Grids. In Proceedings of the 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogota, Colombia, 3–5 October 2018; Volume 2018, pp. 1–7. [Google Scholar]
- Braun, M. Virtual power plant functionalities: Demonstrations in a large laboratory for distributed energy resources. In Proceedings of the CIRED 2009-20th International Conference and Exhibition on Electricity Distribution-Part 1, Prague, Czech Republic, 8–11 June 2009. [Google Scholar]
- Raab, A.F.; Ferdowsi, M.; Karfopoulos, E.; Unda, I.G.; Skarvelis-Kazakos, S.; Papadopoulos, P.; Abbasi, E.; Cipcigan, L.; Jenkins, N.; Hatziargyriou, N.; et al. Virtual Power Plant Control concepts with Electric Vehicles. In Proceedings of the 2011 16th International Conference on Intelligent System Applications to Power Systems, Hersonissos, Greece, 25–28 September 2011; Volume 2011, pp. 1–6. [Google Scholar]
- Pudjianto, D.; Strbac, G.; Boyer, D. Virtual power plant: Managing synergies and conflicts between transmission system operator and distribution system operator control objectives. CIRED Open Access Proc. J. 2017, 2017, 2049–2052. [Google Scholar] [CrossRef] [Green Version]
- Rathor, S.K.; Saxena, D. Energy management system for smart grid: An overview and key issues. Int. J. Energy Res. 2020, 44, 4067–4109. [Google Scholar] [CrossRef]
- Aldegheishem, A.; Bukhsh, R.; Alrajeh, N.; Javaid, N. FaaVPP: Fog as a virtual power plant service for community energy management. Future Gener. Comput. Syst. 2020, 105, 675–683. [Google Scholar] [CrossRef]
- POSITYF Project. 2021. Available online: https://posytyf-h2020.eu (accessed on 26 October 2021).
- Definition and Specification of DVPP Scenarios: Deliverable D1.1. 2021. Available online: https://posytyf-h2020.eu/news-and-events/definition-and-specification-of-dvpp-scenarios-deliverable-d1-1-is-completed (accessed on 26 October 2021).
- Lombardi, P.; Powalko, M.; Rudion, K. Optimal operation of a virtual power plant. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting; Calgary, AB, Canada, 26–30 July 2009; pp. 1–6. [Google Scholar]
- Morais, H.; Kadar, P.; Cardoso, M.; Vale, Z.A.; Khodr, H. VPP operating in the isolated grid. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Pesantez, P. Planificación Eficiente de Redes Inteligentes (Smartgrids) Incluyendo la Gestion Active de la Demanda: Aplicación a Ecuador. Doctoral Dissertation, Universitat Politecnica de Valencia, Valencia, Spain, 4 May 2018. [Google Scholar]
- Zhang, X.; Li, J.; Fu, H. Distribution power & energy internet: From virtual power plants to virtual power systems. Proc. CSEE 2015, 35, 3532–3540. [Google Scholar]
- Zhou, K.; Yang, S.; Shao, Z. Energy Internet: The business perspective. Appl. Energy 2016, 178, 212–222. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Wu, K. Open System Interconnection for Energy: A Reference Model of Energy Internet. In Proceedings of the 2017 IEEE International Conference on Energy Internet (ICEI), Beijing, China, 17–21 April 2017; pp. 314–319. [Google Scholar]
- Saboori, H.; Mohammadi, M.; Taghe, R. Virtual Power Plant (VPP), Definition, Concept, Components and Types. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Yu, S.; Fang, F.; Liu, Y.; Liu, J. Uncertainties of virtual power plant: Problems and countermeasures. Appl. Energy 2019, 239, 454–470. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, C.; Wang, X. Comprehensive review on structure and operation of virtual power plant in electrical system. IET Gener. Transm. Distrib. 2019, 13, 145–156. [Google Scholar] [CrossRef]
- Rahimiyan, M.; Baringo, L. Strategic Bidding for a Virtual Power Plant in the Day-Ahead and Real-Time Markets: A Price-Taker Robust Optimization Approach. IEEE Trans. Power Syst. 2016, 31, 2676–2687. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M. Security-Constrained Unit Commitment for Simultaneous Clearing of Energy and Ancillary Services Markets. IEEE Trans. Power Syst. 2005, 20, 1079–1088. [Google Scholar] [CrossRef]
- Baringo, L.; Rahimiyan, M. Virtual Power Plants and Electricity Markets; Springer: Singapore, 2020. [Google Scholar]
- Morales, J.M.; Conejo, A.J.; Madsen, H.; Pinson, P.; Zugno, M. Integrating Renewables in Electricity Markets. In International Series in Operations Research & Management Science; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; Volume 139. [Google Scholar]
- FENIX Project n.d. Available online: http://www.fenix-project.org (accessed on 9 March 2020).
- Binding, C.; Gantenbein, D.; Jansen, B.; Sundstrom, O.; Andersen, P.B.; Marra, F.; Poulsen, B.; Traeholt, C. Electric vehicle fleet integration in the danish EDISON project—A virtual power plant on the island of Bornholm. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Aabrandt, A.; Andersen, P.B.; Pedersen, A.B.; You, S.; Poulsen, B.; O’Connell, N.; Ostergaard, J. Prediction and optimization methods for electric vehicle charging schedules in the EDISON project. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7. [Google Scholar]
- Østergaard, J.; Foosnæs, A.; Xu, Z.; Mondorf, T.; Andersen, C.; Holthusen, S. Electric Vehicles in Power Systems with 50% Wind Power Penetration: The Danish Case and the EDISON Programme. In Proceedings of the European Conference Electricity & Mobility, Würzburg, Germany, 7–9 January 2009. [Google Scholar]
- PowerShift Atlantic (PSA) n.d. Available online: https://www.nrcan.gc.ca/science-and-data/funding-partnerships/funding-opportunities/current-investments/electricity-load-control-demonstration/4975 (accessed on 1 July 2020).
- PowerShift Atlantic Project n.d. Available online: https://www.nbpower.com/en/about-us/projects/powershift-atlantic (accessed on 1 July 2020).
- PowerShift Atlantic Project (Final Report) n.d. Available online: https://www.nbpower.com/media/1489367/nb_power_psa_en_outreach_report.pdf (accessed on 1 July 2020).
- WEB2ENERGY Project n.d. Available online: https://www.web2energy.com (accessed on 3 March 2020).
- Siemens, RWE Team Up to Develop Mass-Market Virtual Power Plant. 2015. Available online: https://www.utilitydive.com/news/siemens-rwe-team-up-to-develop-mass-market-virtual-power-plant/409752 (accessed on 15 July 2020).
- Virtual Power Plant Next Pool. 2016. Available online: https://renewables-grid.eu/activities/best-practices/database.html?L=0&detail=151&cHash=c70750afc3b6f44116b9db0b7bb1590 (accessed on 12 October 2020).
- Next-Kraftwerke. 2015. Available online: https://www.next-kraftwerke.com (accessed on 2 November 2020).
- Ju, L.; Li, P.; Tan, Q.; Tan, Z.; De, G. A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses. Energies 2018, 11, 2903. [Google Scholar] [CrossRef] [Green Version]
- Distributed System Implementation Plan. 2018. Available online: https://www.coned.com/-/media/files/coned/documents/our-energy-future/our-energy-projects/2018-distributed-system-implementation-plan.pdf (accessed on 8 July 2020).
- Consolidated Edison—Virtual Power Plant Project. 2016. Available online: https://analysis.newenergyupdate.com/energy-storage/con-edison-pilot-15-million-virtual-power-plant-project (accessed on 9 July 2020).
- AGL Virtual Power Plant. 2017. Available online: https://arena.gov.au/projects/agl-virtual-power-plant (accessed on 12 November 2020).
- AEMO—VPP Demonstration Program. PV Mag. 2019. Available online: https://www.pv-magazine-australia.com/2019/07/31/aemo-opens-registrations-for-participation-in-vpp-demonstration-program (accessed on 14 March 2021).
- National Program to Drive Virtual Power Plant Participation in Australia. PV Mag. 2019. Available online: https://www.pv-magazine.com/2019/07/31/national-program-to-drive-virtual-power-plant-participation-in-australia (accessed on 12 May 2021).
- AEMO Virtual Power Plant Demonstration. AEMO. 2020. Available online: https://aemo.com.au/-/media/files/electricity/der/2020/aemo-knowledge-sharing-stage-1-report.pdf?la=en (accessed on 17 March 2021).
- Behi, B.; Baniasadi, A.; Arefi, A.; Gorjy, A.; Jennings, P.; Pivrikas, A. Cost—Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, Case Study. Energies 2020, 13, 2614. [Google Scholar] [CrossRef]
- Simply Energy. 2020. Available online: https://www.simplyenergy.com.au/residential/energy-efficiency/battery-storage (accessed on 10 November 2020).
- ARENA. Simply Energy Virtual Power Plant (VPP). Available online: https://arena.gov.au/projects/simply-energy-virtual-power-plant-vpp (accessed on 21 November 2021).
- Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [Google Scholar] [CrossRef]
- Reka, S.S.; Dragicevic, T. Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renew. Sustain. Energy Rev. 2018, 91, 90–108. [Google Scholar] [CrossRef]
- Mohammadpourfard, M.; Weng, Y.; Pechenizkiy, M.; Tajdinian, M.; Mohammadi-Ivatloo, B. Ensuring cybersecurity of smart grid against data integrity attacks under concept drift. Int. J. Electr. Power Energy Syst. 2020, 119, 105947. [Google Scholar] [CrossRef]
- Tu, C.; He, X.; Shuai, Z.; Jiang, F. Big data issues in smart grid—A review. Renew. Sustain. Energy Rev. 2017, 79, 1099–1107. [Google Scholar] [CrossRef]
- Erlinghagen, S.; Markard, J. Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change. Energy Policy 2012, 51, 895–906. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Worighi, I.; Maach, A.; Hafid, A. Modeling a smart grid using objects interaction. In Proceedings of the 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015; pp. 1–6. [Google Scholar]
- Bouckaert, S. Contribution Des Smart Grids à la Transition Energétique: Évaluation Dans des Scénarios Long Terme; Ecole Nationale Supérieure des Mines de Paris: Paris, France, 2013. [Google Scholar]
- Baumeister, T. Literature Review on Smart Grid Cyber Security; University of Hawaii: Honolulu, HI, USA, 2010. [Google Scholar]
- Nge, C.L.; Ranaweera, I.U.; Midtgård, O.-M.; Norum, L. A real-time energy management system for smart grid integrated photovoltaic generation with battery storage. Renew. Energy 2019, 130, 774–785. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Smart energy management system for optimal microgrid economic operation. IET Renew. Power Gener. 2011, 5, 258–267. [Google Scholar] [CrossRef]
- Aman, S.; Simmhan, Y.; Prasanna, V.K. Energy management systems: State of the art and emerging trends. IEEE Commun. Mag. 2013, 51, 114–119. [Google Scholar] [CrossRef]
- Van der Spoel, E.; Rozing, M.P.; Houwing-Duistermaat, J.J.; Slagboom, P.E.; Beekman, M.; de Craen, A.J.; Westendorp, R.; van Heemst, D. Optimal Serum and Red Blood Cell Folate Conentration in Women of Reproductive Age for Prevention of Neural Tube Defects; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Bendato, I.; Bonfiglio, A.; Brignone, M.; Delfino, F.; Pampararo, F.; Procopio, R. Definition and on-field validation of a microgrid energy management system to manage load and renewables uncertainties and system operator requirements. Electr. Power Syst. Res. 2017, 146, 349–361. [Google Scholar] [CrossRef]
- Mahmud, K.; Khan, B.; Ravishankar, J.; Ahmadi, A.; Siano, P. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renew. Sustain. Energy Rev. 2020, 127, 109840. [Google Scholar] [CrossRef]
- Cheng, Z.; Duan, J.; Chow, M.-Y. Reliability assessment and comparison between centralized and distributed energy management system in islanding microgrid. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, USA, 17–19 September 2017; pp. 1–6. [Google Scholar]
- Grijalva, S.; Tariq, M.U. Prosumer-based smart grid architecture enables a flat, sustainable electricity industry. In Proceedings of the ISGT 2011, Anaheim, CA, USA, 17–19 January 2011; pp. 1–6. [Google Scholar]
- Zafar, R.; Mahmood, A.; Razzaq, S.; Ali, W.; Naeem, U.; Shehzad, K. Prosumer based energy management and sharing in smart grid. Renew. Sustain. Energy Rev. 2018, 82, 1675–1684. [Google Scholar] [CrossRef]
- Rodríguez-Molina, J.; Martínez-Núñez, M.; Martínez, J.-F.; Pérez-Aguiar, W. Business Models in the Smart Grid: Challenges, Opportunities and Proposals for Prosumer Profitability. Energies 2014, 7, 6142–6171. [Google Scholar] [CrossRef] [Green Version]
- Merdanoğlu, H.; Yakıcı, E.; Doğan, O.T.; Duran, S.; Karatas, M. Finding optimal schedules in a home energy management system. Electr. Power Syst. Res. 2020, 182, 106229. [Google Scholar] [CrossRef]
- Inoue, M.; Higuma, T.; Ito, Y.; Kushiro, N.; Kubota, H. Network architecture for home energy management system. IEEE Trans. Consum. Electron. 2003, 49, 606–613. [Google Scholar] [CrossRef]
- Hu, Q.; Li, F. Hardware Design of Smart Home Energy Management System with Dynamic Price Response. IEEE Trans. Smart Grid 2013, 4, 1878–1887. [Google Scholar] [CrossRef]
- Jones, S.R.; Beardmore, J.; Gillott, M.; Boukhanouf, R.; Walker, G. A Control Methodology for Building Energy Management Systems (BEMS) in Heat Networks with Distributed Generation. Energy Procedia 2018, 153, 295–302. [Google Scholar] [CrossRef]
- Mpelogianni, V.; Groumpos, P.P. Building Energy Management System Modelling via State Fuzzy Cognitive Maps and Learning Algorithms. IFAC-PapersOnLine 2019, 52, 513–518. [Google Scholar] [CrossRef]
- Park, K.; Kim, Y.; Kim, S.; Kim, K.; Lee, W.; Park, H. Building Energy Management System based on Smart Grid. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdams, The Netherlands, 9–13 October 2011. [Google Scholar] [CrossRef]
- Cheng, Z.; Duan, J.; Chow, M.-Y. To Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems. IEEE Ind. Electron. Mag. 2018, 12, 6–24. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Microgrids management. IEEE Power Energy Mag. 2008, 6, 54–65. [Google Scholar] [CrossRef]
- Chaudhary, G.; Lamb, J.J.; Burheim, O.S.; Austbø, B. Review of Energy Storage and Energy Management System Control Strategies in Microgrids. Energies 2021, 14, 4929. [Google Scholar] [CrossRef]
- Marinescu, B.; Gomis-Bellmunt, O.; Dörfler, F.; Schulte, H.; Sigrist, L. Dynamic Virtual Power Plant: A New Concept for Grid Integration of Renewable Energy Sources. arXiv 2021, arXiv:2108.00153. [Google Scholar]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Vindel, E.; Berges, M.; Akinci, B. Energy sharing through shared storage in net zero energy communities. J. Phys. Conf. Ser. 2019, 1343, 12107. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Q.; Tian, Z.; He, B.-J.; Jin, G. A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 114, 109314. [Google Scholar] [CrossRef]
- Oh, J.; Hong, T.; Kim, H.; An, J.; Jeong, K.; Koo, C. Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle. Sustainability 2017, 9, 2272. [Google Scholar] [CrossRef] [Green Version]
- Cortés, P.; Auladell-León, P.; Muñuzuri, J.; Onieva, L. Near-optimal operation of the distributed energy resources in a smart microgrid district. J. Clean. Prod. 2020, 252, 119772. [Google Scholar] [CrossRef]
- General Electric. GE Targets Net Zero Energy Homes. 2015. Available online: https://s3.amazonaws.com/files.technologyreview.com/p/pub/legacy/ge_nzehome_2015-final_rev1.pdf (accessed on 23 September 2020).
- Shafiullah, D.S.; Vo, T.; Nguyen, P.H. A Heuristic Search Approach for Sizing Battery Storage of a Neighbourhood including nearly Zero Energy Buildings (nZEB). In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; pp. 1–6. [Google Scholar]
- Ruiz-Romero, S.; Colmenar-Santos, A.; Gil-Ortego, R.; Molina-Bonilla, A. Distributed generation: The definitive boost for renewable energy in Spain. Renew. Energy 2013, 53, 354–364. [Google Scholar] [CrossRef]
- Savvopoulos, N.; Konstantinou, T.; Hatziargyriou, N. TSO-DSO Coordination in Decentralized Ancillary Services Markets. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mora, A.M.; Squillero, G. Applications of Evolutionary Computation: 18th European Conference, EvoApplications; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9028, pp. 252–264. [Google Scholar]
- SmartNet Project n.d. Available online: http://smartnet-project.eu (accessed on 10 April 2020).
- Merino, J.; Madina, C.; Jimeno, J.; Gerard, H. Validación De Nuevos Esquemas de Coordinación TSO/DSO Para Favorecer La Integración De Energías Eenovables En El Sistema Eléctrico En El Horizonte 2030+. El Proyecto SmartNet. 2016. Available online: https://www.smartgridsinfo.es/comunicaciones/comunicacion-validacion-nuevos-esquemas-coordinacion-tso-dso-favorecer-integracion-energias-renovables-sistema-electrico-horizonte-2030-proyecto-smartnet (accessed on 12 August 2020).
- Doubleday, K.; Hafiz, F.; Parker, A.; Elgindy, T.; Florita, A.; Henze, G.; Salvalai, G.; Pless, S.; Hodge, B. Integrated distribution system and urban district planning with high renewable penetrations. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, 1–15. [Google Scholar] [CrossRef]
Criteria | Characteristics |
---|---|
Geographic expansion | It does not depend on physical interconnection between its elements. Geographic expansion is limited to regulatory and economic criteria. |
Operation | Always works synchronized into grid. |
Interface | Through communication and coordination protocols between the DERs and the system operator. |
Coordination | With TSO and DSO. |
Composition | Conventional and renewable-based generation. |
Enabling technologies | Smart metering, information and communication technologies (TICs); smart energy management systems; and development of artificial intelligence. |
Objectives | Energy and economic efficiency. |
Market | Energy, power reserve and ancillary services offers in wholesale markets. |
Project | Country | Year | Characteristics |
---|---|---|---|
FENIX [63] | United Kingdom, Spain, France | 2005–2009 |
|
Edison Project [64,65,66] | Bornholm Island, Denmark | 2009–2012 |
|
PowerShift Atlantic [67,68,69] | Canada | 2010–2015 |
|
WEB2 ENERGY [70] | Germany | 2010–2015 |
|
Smartpool [71,72,73] | Germany | 2015 |
|
Shanghai Huangpu District VPP project [57,74] | China | 2016 |
|
Consolidated Edison [75,76] | USA | 2018–2020 |
|
AGL Virtual Power Plant [77] | Australia | 2018 |
|
Virtual Power Plant Demonstrations [78,79,80,81] | Australia | 2018 |
|
Simply Energy Virtual Power Plant [82,83] | Australia | 2019 |
|
POSITYF Project [48] | Spain, France, Switzerland, Germany | 2021 |
|
Top-Down Operating Approach | Bottom-Up Operating Approach | |
---|---|---|
Reduced operational complexity | ✓ | |
Facilitation of DER integration | ✓ | |
Visibility and control of DERs by the SO | ✓ | |
Management of large-capacity power plants | ✓ | |
Management and control of bidirectional power flows | ✓ | |
Contribution with ancillary services for the system | ✓ | ✓ |
Provision of flexibility to the system | ✓ | ✓ |
Motivation of dynamic markets with DERs | ✓ |
Centralized Model | Local Model | Shared Balancing Responsibility Model | Common TSO-DSO Market Model | Integrated Flexibility Model | |
---|---|---|---|---|---|
Centralized Operational Architecture | ✓ | ✓ | ✓ | ||
Decentralized Operational Architecture | ✓ | ✓ | |||
TSO with responsibility for the balance of the system | ✓ | ✓ | ✓ | ✓ | ✓ |
DSO with responsibility for the balance of the system | ✓ | ✓ | ✓ | ||
Requirement of an independent market operator | ✓ | ||||
Participation in the top-down market | ✓ | ✓ | ✓ | ||
Participation in the bottom-up market | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmiento-Vintimilla, J.C.; Torres, E.; Larruskain, D.M.; Pérez-Molina, M.J. Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources. Energies 2022, 15, 775. https://doi.org/10.3390/en15030775
Sarmiento-Vintimilla JC, Torres E, Larruskain DM, Pérez-Molina MJ. Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources. Energies. 2022; 15(3):775. https://doi.org/10.3390/en15030775
Chicago/Turabian StyleSarmiento-Vintimilla, Juan C., Esther Torres, Dunixe Marene Larruskain, and María José Pérez-Molina. 2022. "Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources" Energies 15, no. 3: 775. https://doi.org/10.3390/en15030775
APA StyleSarmiento-Vintimilla, J. C., Torres, E., Larruskain, D. M., & Pérez-Molina, M. J. (2022). Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources. Energies, 15(3), 775. https://doi.org/10.3390/en15030775