Potential of Demand Response for Power Reallocation, a Literature Review
Abstract
:1. Introduction
2. Literature Review
2.1. State of the Art of DR Participation Methods
- Large commercial firms and industries (CI);
- Small commercial firms and industries (CI);
- Households dwellings;
- Personal electric vehicles (PEV);
- PEV fleets.
2.2. DR Research Fields
2.3. Potential Assessment
2.3.1. Potential Implementation
2.3.2. Focus
2.3.3. Key Parameters
2.4. Potential Implementation
2.4.1. Contributions
2.4.2. Models
2.4.3. Demand Response within the Different Sectors
3. Evolution of DR Potential
3.1. Trend of Implementation Sectors
3.2. Present State of the Keywords and Future Trend
3.3. Development of DR Considerations
3.4. Development of the Types of DR
3.5. Trend of DR Research by Sectors
3.6. DR Research in the Different Continents and Related Contributions
3.6.1. Trend of Demand Response Research in Europe
3.6.2. Research Trend on Demand Response in Asia
3.6.3. Research Trend of Demand Response in the Americas
3.6.4. Research Trend of Works on Other Regions and Studies Independent of Location
4. Future Evolution of DR Potential
4.1. Artificial Intelligence Assisted Strategies
4.2. DR Influence on the Smart Grid and Big Data
4.3. DR Role in Sustainable Electricity
4.4. DR within Product–Service System
4.5. Energy Consumption Feedback Using DR and Blockchain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Department of Energy, Office of Electricity. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them; Report to the United States Congress; US Department of Energy, Office of Electricity: Washington, DC, USA, 2006. [Google Scholar]
- Amrollahi, M.H.; Bathaee, S.M.T. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy 2017, 202, 66–77. [Google Scholar] [CrossRef]
- Zhang, X.; Hug, G.; Kolter, J.Z.; Harjunkoski, I. Model predictive control of industrial loads and energy storage for demand response. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM 2016), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Yang, P.; Chavali, P.; Nehorai, A. Parallel autonomous optimization of demand response with renewable distributed generators. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 55–60. [Google Scholar]
- Deng, R.; Yang, Z.; Chow, M.Y.; Chen, J. A survey on demand response in smart grids: Mathematical models and approaches. IEEE Trans. Ind. Inform. 2015, 11, 570–582. [Google Scholar] [CrossRef]
- Werminski, S.; Jarnut, M.; Benysek, G.; Bojarski, J. Demand side management using DADR automation in the peak load reduction. Renew. Sustain. Energy Rev. 2017, 67, 998–1007. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyen, D.; Palminder, S. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Müller, T.; Möst, D. Demand response potential: Available when needed? Energy Policy 2018, 115, 181–198. [Google Scholar] [CrossRef]
- Ali, M.; Safdarian, A.; Lehtonen, M. Demand response potential of residential HVAC loads considering users preferences. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–6. [Google Scholar]
- Rotger-Griful, S.; Jacobsen, R.H.; Nguyen, D.; Sørensen, G. Demand response potential of ventilation systems in residential buildings. Energy Build. 2016, 121, 1–10. [Google Scholar] [CrossRef]
- Samad, T.; Kiliccote, S. Smart grid technologies and applications for the industrial sector. Comput. Chem. Eng. 2012, 47, 76–84. [Google Scholar] [CrossRef]
- Federal Energy Regulatory Commission. Available online: https://www.ferc.gov (accessed on 23 March 2021).
- Kathan, D. Assessment of Demand Response and Advanced Metering; Federal Energy Regulatory Commission: Washington, DC, USA, 2009. [Google Scholar]
- Heitkoetter, W.; Schyska, B.U.; Schmidt, D.; Medjroubi, W.; Vogt, T.; Agert, C. Assessment of the regionalised demand response potential in Germany using an open source tool and dataset. Adv. Appl. Energy 2020, 1, 100001. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, D.; Huang, X.; Lou, B.; Liu, D. Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response. Appl. Energy 2020, 275, 115407. [Google Scholar] [CrossRef]
- Bego, A.; Li, L.; Sun, Z. Identification of reservation capacity in critical peak pricing electricity demand response program for sustainable manufacturing systems. Int. J. Energy Res. 2014, 38, 728–736. [Google Scholar] [CrossRef]
- Cui, H.; Li, F.; Hu, Q.; Bai, L.; Fang, X. Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants. Appl. Energy 2016, 176, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Parizy, E.S.; Bahrami, H.R.; Choi, S. A low complexity and secure demand response technique for peak load reduction. IEEE Trans. Smart Grid 2018, 10, 3259–3268. [Google Scholar] [CrossRef]
- Ghazvini, M.A.F.; Soares, J.; Abrishambaf, O.; Castro, R.; Vale, Z. Demand response implementation in smart households. Energy Build. 2017, 143, 129–148. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, F.; Boaro, M.; Fuselli, D.; Squartini, S.; Piazza, F.; Wei, Q. Optimal home energy management under dynamic electrical and thermal constraints. IEEE Trans. Ind. Inform. 2012, 9, 1518–1527. [Google Scholar] [CrossRef]
- Li, W.T.; Yuen, C.; Hassan, N.U.; Tushar, W.; Wen, C.K.; Wood, K.L.; Liu, X. Demand response management for residential smart grid: From theory to practice. IEEE Access 2015, 3, 2431–2440. [Google Scholar] [CrossRef]
- Tang, R.; Wang, S. Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids. Appl. Energy 2019, 242, 873–882. [Google Scholar] [CrossRef]
- Qayyum, F.A.; Naeem, M.; Khwaja, A.S.; Anpalagan, A.; Guan, L.; Venkatesh, B. Appliance scheduling optimization in smart home networks. IEEE Access 2015, 3, 2176–2190. [Google Scholar] [CrossRef]
- Aalami, H.A.; Moghaddam, M.P.; Yousefi, G.R. Demand response modeling considering interruptible/curtailable loads and capacity market programs. Appl. Energy 2010, 87, 243–250. [Google Scholar] [CrossRef]
- Brown, T.; Newell, S.A.; Oates, D.L.; Spees, K. International Review of Demand Response Mechanisms; The Brattle Group: London, UK, 2015. [Google Scholar]
- Shoreh, M.H.; Siano, P.; Shafie-khah, M.; Loia, V.; Catalão, J.P. A survey of industrial applications of Demand Response. Electr. Power Syst. Res. 2016, 141, 31–49. [Google Scholar] [CrossRef]
- Valdes, J.; González, A.B.P.; Camargo, L.R.; Fenández, M.V.; Macia, Y.M.; Dorner, W. Industry, flexibility, and demand response: Applying German energy transition lessons in Chile. Energy Res. Soc. Sci. 2019, 54, 12–25. [Google Scholar] [CrossRef]
- Karlsen, S.S.; Hamdy, M.; Attia, S. Methodology to assess business models of dynamic pricing tariffs in all-electric houses. Energy Build. 2020, 207, 109586. [Google Scholar] [CrossRef]
- Martin, K.; Jokisalo, J.; Kosonen, R.; Alimohammadisagvand, B. Demand response of space heating and ventilation—Impact on indoor environmental quality. In Proceedings of the Roomvent & Ventilation 2018, Espoo, Finland, 2–5 June 2018; pp. 121–162. [Google Scholar]
- Hu, M.; Xiao, F. Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm. Appl. Energy 2018, 219, 151–164. [Google Scholar] [CrossRef]
- Ren, D.; Li, H.; Ji, Y. Home energy management system for the residential load control based on the price prediction. In Proceedings of the IEEE Online Conference on Green Communications, Online, 26–29 September 2011; pp. 1–6. [Google Scholar]
- Olsen, D.; Goli, S.; Faulkner, D.; McKane, A. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial/Agricultural/Water End-Use Energy Efficiency Program; eScholarship Open Access Publications; Lawrence Berkeley National Laboratory, University of California: Berkeley, CA, USA, 2010. [Google Scholar]
- Klaassen, E.A.M.; Kobus, C.B.A.; Frunt, J.; Slootweg, J.G. Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands. Appl. Energy 2016, 183, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Rieger, A.; Thummert, R.; Fridgen, G.; Kahlen, M.; Ketter, W. Estimating the benefits of cooperation in a residential microgrid: A data-driven approach. Appl. Energy 2016, 180, 130–141. [Google Scholar] [CrossRef]
- Torriti, J. Demand Side Management for the European Supergrid: Occupancy variances of European single-person households. Energy Policy 2012, 44, 199–206. [Google Scholar] [CrossRef]
- Alimohammadisagvand, B.; Jokisalo, J.; Sirén, K. The potential of predictive control in minimizing the electricity cost in a heat-pump heated residential house. In Proceedings of the 3rd IBPSA-England Conference Building Simulation & Optimization, Newcastle, UK, 12–14 September 2016. [Google Scholar]
- Pereira, R.; Fagundes, A.; Melício, R.; Mendes, V.M.F.; Figueiredo, J.; Martins, J.; Quadrado, J.C. A fuzzy clustering approach to a demand response model. Int. J. Electr. Power Energy Syst. 2016, 81, 184–192. [Google Scholar] [CrossRef]
- Rodríguez-García, J.; Alvarez-Bel, C.; Carbonell-Carretero, J.F.; Alcázar-Ortega, M.; Peñalvo-López, E. A novel tool for the evaluation and assessment of demand response activities in the industrial sector. Energy 2016, 113, 1136–1146. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Zhang, Y.; Zhao, Z.; Huang, Y. Multiobjective robust scheduling for smart distribution grids: Considering renewable energy and demand response uncertainty. IEEE Access 2018, 6, 45715–45724. [Google Scholar] [CrossRef]
- Good, N. Using behavioural economic theory in modelling of demand response. Appl. Energy 2019, 239, 107–116. [Google Scholar] [CrossRef]
- Yalcin, Y.; Yigit, K.; Acarkan, B. Energy management of water transfer stations by using demand response programs. In Proceedings of the 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; pp. 1–5. [Google Scholar]
- Nilsson, A.; Lazarevic, D.; Brandt, N.; Kordas, O. Household responsiveness to residential demand response strategies: Results and policy implications from a Swedish field study. Energy Policy 2018, 122, 273–286. [Google Scholar] [CrossRef]
- Tahir, M.F.; Chen, H.; Khan, A.; Javed, M.S.; Cheema, K.M.; Laraik, N.A. Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements. Technol. Soc. 2020, 63, 101374. [Google Scholar] [CrossRef]
- Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/dir/2019/944/oj (accessed on 12 January 2022).
- Cobelo, I.; Rodriguez, J.E.; Boyra, M.; Anduaga, J.; Castellanos, A. Economical and technical viability of demand response in the Spanish power system: The “OPTIGES” project. In Proceedings of the CIRED Seminar 2008: SmartGrids for Distribution, Frankfurt, Germany, 23–24 June 2008; pp. 1–4. [Google Scholar]
- Sharifi, R.; Fathi, S.H.; Anvari-Moghaddam, A.; Guerrero, J.M.; Vahidinasab, V. An economic customer-oriented demand response model in electricity markets. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19–22 February 2018; pp. 1149–1153. [Google Scholar]
- Märkle-Huß, J.; Feuerriegel, S.; Neumann, D. Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market. Appl. Energy 2018, 210, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Eid, C.; Koliou, E.; Valles, M.; Reneses, J.; Hakvoort, R. Time-based pricing and electricity demand response: Existing barriers and next steps. Util. Policy 2016, 40, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Kohlhepp, P.; Harb, H.; Wolisz, H.; Waczowicz, S.; Müller, D.; Hagenmeyer, V. Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies. Renew. Sustain. Energy Rev. 2019, 101, 527–547. [Google Scholar] [CrossRef]
- Jayantilal, P.H.; Shah, N.E.H.A. A review on electrical energy management techniques for supply and consumer side in industries. Int. J. Sci. Eng. Technol. Res. 2014, 3, 550–556. [Google Scholar]
- Müller, F.L.; Jansen, B. Large-scale demonstration of precise demand response provided by residential heat pumps. Appl. Energy 2019, 239, 836–845. [Google Scholar] [CrossRef]
- Bui, V.H.; Hussain, A.; Kim, H.M. A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Trans. Smart Grid 2016, 9, 1323–1333. [Google Scholar] [CrossRef]
- Yao, L.; Lim, W.H.; Tsai, T.S. A real-time charging scheme for demand response in electric vehicle parking station. IEEE Trans. Smart Grid 2016, 8, 52–62. [Google Scholar] [CrossRef]
- Yang, S.C. The Survey of Characteristic of Participants in Demand Response; Taiwan Power Research Institute: Taipei, China, 2019. [Google Scholar]
- Stede, J.; Arnold, K.; Dufter, C.; Holtz, G.; von Roon, S.; Richstein, J.C. The role of aggregators in facilitating industrial demand response: Evidence from Germany. Energy Policy 2020, 147, 111893. [Google Scholar] [CrossRef]
- Vuelvas, J.; Ruiz, F. A novel incentive-based demand response model for Cournot competition in electricity markets. Energy Syst. 2019, 10, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Torriti, J.; Hassan, M.G.; Leach, M. Demand response experience in Europe: Policies, programmes and implementation. Energy 2010, 35, 1575–1583. [Google Scholar] [CrossRef] [Green Version]
- Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18. [Google Scholar] [CrossRef]
- Ozturk, Y.; Senthilkumar, D.; Kumar, S.; Lee, G. An intelligent home energy management system to improve demand response. IEEE Trans. Smart Grid 2013, 4, 694–701. [Google Scholar] [CrossRef]
- Chuan, L.; Ukil, A. Modeling and validation of electrical load profiling in residential buildings in Singapore. IEEE Trans. Power Syst. 2014, 30, 2800–2809. [Google Scholar] [CrossRef] [Green Version]
- Bitaraf, H.; Rahman, S. Reducing curtailed wind energy through energy storage and demand response. IEEE Trans. Sustain. Energy 2017, 9, 228–236. [Google Scholar] [CrossRef]
- Dehnavi, E.; Abdi, H. Determining optimal buses for implementing demand response as an effective congestion management method. IEEE Trans. Ind. Inform. 2016, 32, 1537–1544. [Google Scholar] [CrossRef]
- Torstensson, D.; Wallin, F. Potential and barriers for demand response at household customers. Energy Procedia 2015, 75, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Singaravelan, A.; Kowsalya, M. A novel minimum cost maximum power algorithm for future smart home energy management. J. Adv. Res. 2017, 8, 731–741. [Google Scholar] [CrossRef]
- Paterakis, N.G.; Erdinc, O.; Bakirtzis, A.G.; Catalão, J.P. Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies. IEEE Trans. Ind. Inform. 2015, 11, 1509–1519. [Google Scholar] [CrossRef]
- Shakeri, M.; Shayestegan, M.; Abunima, H.; Reza, S.S.; Akhtaruzzaman, M.; Alamoud, A.R.M.; Amin, N. An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy Build. 2017, 138, 154–164. [Google Scholar] [CrossRef]
- Hussain, I.; Mohsin, S.; Basit, A.; Khan, Z.A.; Qasim, U.; Javaid, N. A Review on Demand Response: Pricing, Optimization, and Appliance Scheduling. Procedia Comput. Sci. 2015, 52, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 2019, 103, 308–319. [Google Scholar] [CrossRef]
- Pang, Y.; He, Y.; Jiao, J.; Cai, H. Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia. Energy 2020, 192, 116669. [Google Scholar] [CrossRef]
- Starke, M.R.; Alkadi, N.E.; Letto, D.; Johnson, B.; Dowling, K.; George, R.; Khan, S. Demand-Side Response from Industrial Loads; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2013. [Google Scholar]
- Liu, Z.; Wierman, A.; Chen, Y.; Razon, B.; Chen, N. Data center demand response: Avoiding the coincident peak via workload shifting and local generation. Perform. Eval. 2013, 70, 770–791. [Google Scholar] [CrossRef] [Green Version]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Dranka, G.G.; Ferreira, P. Review and assessment of the different categories of demand response potentials. Energy 2019, 179, 280–294. [Google Scholar] [CrossRef]
- Aryandoust, A.; Lilliestam, J. The potential and usefulness of demand response to provide electricity system services. Appl. Energy 2017, 204, 749–766. [Google Scholar] [CrossRef]
- Barbierato, L.; Estebsari, A.; Pons, E.; Pau, M.; Salassa, F.; Ghirardi, M.; Patti, E. A distributed IoT infrastructure to test and deploy real-time demand response in smart grids. IEEE Internet Things J. 2018, 6, 1136–1146. [Google Scholar] [CrossRef]
- Radenković, M.; Bogdanović, Z.; Despotović-Zrakić, M.; Labus, A.; Lazarević, S. Assessing consumer readiness for participation in IoT-based demand response business models. Technol. Forecast. Soc. Chang. 2020, 150, 119715. [Google Scholar] [CrossRef]
- Gholian, A.; Mohsenian-Rad, H.; Hua, Y. Optimal industrial load control in smart grid. IEEE Trans. Smart Grid 2015, 7, 2305–2316. [Google Scholar] [CrossRef]
- Neves, D.; Silva, C.A. Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms. Energy 2015, 82, 436–445. [Google Scholar] [CrossRef]
- Bossmann, T.; Eser, E.J. Model-based assessment of demand-response measures—A comprehensive literature review. Renew. Sustain. Energy Rev. 2016, 57, 1637–1656. [Google Scholar] [CrossRef]
- Vivekananthan, C.; Mishra, Y.; Ledwich, G.; Li, F. Demand response for residential appliances via customer reward scheme. IEEE Trans. Smart Grid 2014, 5, 809–820. [Google Scholar] [CrossRef]
- Firouzmakan, P.; Hooshmand, R.A.; Bornapour, M.; Khodabakhshian, A. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renew. Sustain. Energy Rev. 2019, 108, 335–368. [Google Scholar] [CrossRef]
- Ghasemi, A.; Enayatzare, M. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response. Renew. Energy 2018, 123, 460–474. [Google Scholar] [CrossRef]
- Derakhshan, G.; Shayanfar, H.A.; Kazemi, A. The optimization of demand response programs in smart grids. IEEE Trans. Ind. Inform. 2016, 94, 295–306. [Google Scholar] [CrossRef]
- Setlhaolo, D.; Xia, X.; Zhang, J. Optimal scheduling of household appliances for demand response. Electr. Power Syst. Res. 2014, 116, 24–28. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Nagy, Z. Reinforcement learning for demand response: A review of algorithms and modeling techniques. Appl. Energy 2019, 235, 1072–1089. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar] [CrossRef]
- Esnaola-Gonzalez, I.; Diez, F.J. Integrating Building and IoT data in Demand Response solutions. In Proceedings of the 7th Linked Data in Architecture and Construction Workshop, Lisbon, Portugal, 19–21 June 2019. [Google Scholar]
- Kusumaningdyah, W.; Tezuka, T.; McLellan, B.C. Investigating Preconditions for Sustainable Renewable Energy Product–Service Systems in Retail Electricity Markets. Energies 2021, 14, 1877. [Google Scholar] [CrossRef]
Energy Management | Load | Ancillary Services | Others |
---|---|---|---|
41% | 34% | 19% | 6% |
Management of generation and consumption | Electric power on the grid, real-time power on the system | Ensure secure and stable operation of the power system, guarantee the electricity supply while maintaining constant voltage and frequency | Research work not relevant to the previous categories |
Classic Algorithms | Metaheuristic Algorithms |
---|---|
Linear Programming (LP) | Particle swarm optimization (PSO) |
Non-linear Programming (NLP) | Genetic algorithm (GA) Simulated annealing algorithm (SA) Teaching learning-based optimization (TLBO) |
Contributions | Models | Implementation | Barriers | Potential | Costs | Others |
---|---|---|---|---|---|---|
Number of publications | 17 | 8 | 10 | 12 | 0 | 9 |
Contributions | Models | Implementation | Barriers | Potential | Costs | Others |
---|---|---|---|---|---|---|
Number of publications | 10 | 7 | 3 | 7 | 0 | 7 |
Contributions | Models | Implementation | Barriers | Potential | Costs | Others |
---|---|---|---|---|---|---|
Number of publications | 11 | 9 | 3 | 6 | 6 | 1 |
Contributions | Models | Implementation | Barriers | Potential | Costs | Others |
---|---|---|---|---|---|---|
Number of publications | 2 | 3 | 2 | 4 | 1 | 6 |
Contributions | Models | Implementation | Barriers | Potential | Costs | Others |
---|---|---|---|---|---|---|
Number of publications | 10 | 7 | 1 | 6 | 0 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binyet, E.; Chiu, M.-C.; Hsu, H.-W.; Lee, M.-Y.; Wen, C.-Y. Potential of Demand Response for Power Reallocation, a Literature Review. Energies 2022, 15, 863. https://doi.org/10.3390/en15030863
Binyet E, Chiu M-C, Hsu H-W, Lee M-Y, Wen C-Y. Potential of Demand Response for Power Reallocation, a Literature Review. Energies. 2022; 15(3):863. https://doi.org/10.3390/en15030863
Chicago/Turabian StyleBinyet, Emmanuel, Ming-Chuan Chiu, Hsin-Wei Hsu, Meng-Ying Lee, and Chih-Yuan Wen. 2022. "Potential of Demand Response for Power Reallocation, a Literature Review" Energies 15, no. 3: 863. https://doi.org/10.3390/en15030863
APA StyleBinyet, E., Chiu, M.-C., Hsu, H.-W., Lee, M.-Y., & Wen, C.-Y. (2022). Potential of Demand Response for Power Reallocation, a Literature Review. Energies, 15(3), 863. https://doi.org/10.3390/en15030863