Potential of NiOx/Nickel Silicide/n+ Poly-Si Contact for Perovskite/TOPCon Tandem Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Au/NiOx/(ITO)/n+ Poly-Si Contact Measurement Sample Fabrication (Sample A)
2.2. NiOx, NiSi Material Characterization (Sample B)
2.3. NiOx/TOPCon Bottom Cell Fabrication (Sample C)
3. Results and Discussion
3.1. Contact Property of NiOx/n+ Poly-Si
3.2. Nickel Silicide Confirmation
3.3. NiOx Thin Film XPS Analysis
3.4. TOPCon Bottom Cell Analysis with NiOx Layer
3.5. Potential of NiOx/Nickel Silicide/n+ Poly-Si Interlayer Structure for Tandem
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Schafer, S.; Brendel, R. Accurate Calculation of the Absorptance Enhances Efficiency Limit of Crystalline Silicon Solar Cells with Lambertian Light Trapping. IEEE J. Photovolt. 2018, 8, 1156–1158. [Google Scholar] [CrossRef]
- Feldmann, F.; Bivour, M.; Reichel, C.; Steinkemper, H.; Hermle, M.; Glunz, S.W. Tunnel oxide passivated contacts as an alternative to partial rear contacts. Sol. Energy Mater. Sol. Cells 2014, 131, 46–50. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Yoshida, W.; Irie, T.; Kawasaki, H.; Konishi, K.; Ishibashi, H.; Asatani, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 2017, 173, 37–42. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L.E.; Lee, S.; Park, S.; Park, H.; Schubert, M.C.; et al. UV Degradation and Recovery of Perovskite Solar Cells. Sci. Rep. 2016, 6, 38150. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-K.; Lee, S.-W.; Lee, W.; Bae, S.; Cho, K.; Kim, S.; Lee, S.; Hyun, J.Y.; Kang, Y.; Lee, H.-S.; et al. Conformal perovskite films on 100 cm2 textured silicon surface using two-step vacuum process. Thin Solid Films 2020, 693, 137694. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite Solar Cell: Research Direction for Next 10 Years. ACS Energy Lett. 2019, 4, 2983–2985. [Google Scholar] [CrossRef] [Green Version]
- Mailoa, J.P.; Bailie, C.D.; Johlin, E.C.; Hoke, E.T.; Akey, A.J.; Nguyen, W.H.; McGehee, M.D.; Buonassisi, T. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 2015, 106, 121105. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, S.; Saliba, M.; Correa Baena, J.P.; Lang, F.; Kegelmann, L.; Mews, M.; Steier, L.; Abate, A.; Rappich, J.; Korte, L.; et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 2016, 9, 81–88. [Google Scholar] [CrossRef]
- Bush, K.A.; Palmstrom, A.F.; Yu, Z.J.; Boccard, M.; Cheacharoen, R.; Mailoa, J.P.; McMeekin, D.P.; Hoye, R.L.Z.; Bailie, C.D.; Leijtens, T.; et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009. [Google Scholar] [CrossRef]
- Sahli, F.; Werner, J.; Kamino, B.A.; Brauninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Diaz Leon, J.J.; Sacchetto, D.; et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018, 17, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Nogay, G.; Sahli, F.; Werner, J.; Monnard, R.; Boccard, M.; Despeisse, M.; Haug, F.J.; Jeangros, Q.; Ingenito, A.; Ballif, C. 25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a p-type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts. ACS Energy Lett. 2019, 4, 844–845. [Google Scholar] [CrossRef]
- Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J.A.; Vilches, A.B.M.; Kasparavicius, E.; Smith, J.A.; et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 2020, 370, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jung, H.J.; Park, I.J.; Larson, B.W.; Dunfield, S.P.; Xiao, C.; Kim, J.; Tong, J.; Boonmongkolras, P.; Ji, S.G.; et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 2020, 368, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.; Yeom, K.M.; Lee, H.E.; Kim, D.; Lee, H.-S.; Noh, J.H.; Kang, Y. Efficient n-i-p Monolithic Perovskite/Silicon Tandem Solar Cells with Tin Oxide via a Chemical Bath Deposition Method. Energies 2021, 14, 7614. [Google Scholar] [CrossRef]
- Lee, S.-W.; Bae, S.; Hwang, J.-K.; Lee, W.; Lee, S.; Hyun, J.Y.; Cho, K.; Kim, S.; Heinz, F.D.; Bin Choi, S.; et al. Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Song, H.; Lee, C.; Hyun, J.; Lee, S.-W.; Choi, D.; Pyun, D.; Nam, J.; Jeong, S.-H.; Kim, J.; Bae, S.; et al. Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer. Energies 2021, 14, 3108. [Google Scholar] [CrossRef]
- Demaurex, B.; De Wolf, S.; Descoeudres, A.; Charles Holman, Z.; Ballif, C. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering. Appl. Phys. Lett. 2012, 101, 171604. [Google Scholar] [CrossRef] [Green Version]
- Messmer, C.; Bivour, M.; Luderer, C.; Tutsch, L.; Schon, J.; Hermle, M. Influence of Interfacial Oxides at TCO/Doped Si Thin Film Contacts on the Charge Carrier Transport of Passivating Contacts. IEEE J. Photovolt. 2020, 10, 343–350. [Google Scholar] [CrossRef]
- Du, H.W.; Yang, J.; Li, Y.H.; Xu, F.; Xu, J.; Ma, Z.Q. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering. Appl. Phys. Lett. 2015, 106, 093508. [Google Scholar] [CrossRef]
- Zheng, J.; Lau, C.F.J.; Mehrvarz, H.; Ma, F.-J.; Jiang, Y.; Deng, X.; Soeriyadi, A.; Kim, J.; Zhang, M.; Hu, L.; et al. Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ. Sci. 2018, 11, 2432–2443. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Omelchenko, S.T.; Jacobs, D.A.; Yalamanchili, S.; Wan, Y.; Yan, D.; Phang, P.; Duong, T.; Wu, Y.; Yin, Y.; et al. In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. Sci. Adv. 2018, 4, eaau9711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.H.; Song, H.-E.; Kim, K.-H.; Oh, J. Investigation of surface reactions in metal oxide on Si for efficient heterojunction Si solar cells. APL Mater. 2019, 7, 071106. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Nyborg, L.; Jelvestam, U. XPS calibration study of thin-film nickel silicides. Surf. Interface Anal. 2009, 41, 471–483. [Google Scholar] [CrossRef]
- Wittenauer, M.A.; Van Zandt, L.L. Surface conduction versus bulk conduction in pure stoichiometric NiO crystals. Philos. Mag. B 2006, 46, 659–667. [Google Scholar] [CrossRef]
- Jang, W.-L.; Lu, Y.-M.; Hwang, W.-S.; Hsiung, T.-L.; Wang, H.P. Point defects in sputtered NiO films. Appl. Phys. Lett. 2009, 94, 062103. [Google Scholar] [CrossRef]
- Kim, S.-K.; Seok, H.-J.; Kim, D.-H.; Choi, D.-H.; Nam, S.-J.; Kim, S.-C.; Kim, H.-K. Comparison of NiOx thin film deposited by spin-coating or thermal evaporation for application as a hole transport layer of perovskite solar cells. RSC Adv. 2020, 10, 43847–43852. [Google Scholar] [CrossRef]
- Ren, R.; Guo, Y.X.; Wang, J.; Zhu, R.H. Fully passivated radial junction nanowire silicon solar cells with submerged nickel-silicide contact for efficiency enhancement. Electron. Lett. 2013, 49, 767–769. [Google Scholar] [CrossRef]
- Sun, H.; Wu, H.C.; Chen, S.C.; Ma Lee, C.W.; Wang, X. Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles. Nanoscale Res. Lett. 2017, 12, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.-J.; Erskine, J.L. Diffusion layers and the Schottky-barrier height in nickel silicide—silicon interfaces. Phys. Rev. B 1983, 28, 5766–5773. [Google Scholar] [CrossRef]
- Nehate, S.D.; Prakash, A.; Mani, P.D.; Sundaram, K.B. Work Function Extraction of Indium Tin Oxide Films from MOSFET Devices. ECS J. Solid State Sci. Technol. 2018, 7, P87–P90. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, C.; Dong, H.; Chen, D.; Zhu, W.; Xi, H.; Chang, J.; Lin, Z.; Zhang, J.; Hao, Y. Efficient NiOx Hole Transporting Layer Obtained by the Oxidation of Metal Nickel Film for Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 4700–4707. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, A.; Cai, F.; Tao, L.; Zhou, Y.; Zhao, Z.; Chen, Q.; Cheng, Y.-B.; Zhou, H. Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 2017, 5, 6597–6605. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.R.; Kim, H.P.; Lin, T.; Kanwat, A.; Mohd Yusoff, A.R.; Jang, J. Effects of UV-ozone irradiation on copper doped nickel acetate and its applicability to perovskite solar cells. Nanoscale 2016, 8, 9284–9292. [Google Scholar] [CrossRef]
Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | |
---|---|---|---|---|
Without NiOx | 562.2 | 31.2 | 53.55 | 9.38 |
As-deposited NiOx | 557.6 | 25.1 | 60.21 | 8.42 |
Annealed NiOx | 565.3 | 21.6 | 63.07 | 7.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Pyun, D.; Choi, D.; Jeong, S.-H.; Lee, C.; Hyun, J.; Lee, H.E.; Lee, S.-W.; Song, H.; Lee, S.; et al. Potential of NiOx/Nickel Silicide/n+ Poly-Si Contact for Perovskite/TOPCon Tandem Solar Cells. Energies 2022, 15, 870. https://doi.org/10.3390/en15030870
Kim J, Pyun D, Choi D, Jeong S-H, Lee C, Hyun J, Lee HE, Lee S-W, Song H, Lee S, et al. Potential of NiOx/Nickel Silicide/n+ Poly-Si Contact for Perovskite/TOPCon Tandem Solar Cells. Energies. 2022; 15(3):870. https://doi.org/10.3390/en15030870
Chicago/Turabian StyleKim, Jiryang, Dowon Pyun, Dongjin Choi, Seok-Hyun Jeong, Changhyun Lee, Jiyeon Hyun, Ha Eun Lee, Sang-Won Lee, Hoyoung Song, Solhee Lee, and et al. 2022. "Potential of NiOx/Nickel Silicide/n+ Poly-Si Contact for Perovskite/TOPCon Tandem Solar Cells" Energies 15, no. 3: 870. https://doi.org/10.3390/en15030870
APA StyleKim, J., Pyun, D., Choi, D., Jeong, S.-H., Lee, C., Hyun, J., Lee, H. E., Lee, S.-W., Song, H., Lee, S., Kim, D., Kang, Y., & Lee, H.-S. (2022). Potential of NiOx/Nickel Silicide/n+ Poly-Si Contact for Perovskite/TOPCon Tandem Solar Cells. Energies, 15(3), 870. https://doi.org/10.3390/en15030870