Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems
- Stationary combustion systems at the mega- and nanoscales and their emissions—generation, reduction, and problems;
- Advanced combustion technologies and renewable energy sources;
- Diagnostics in combustion systems;
- Fire and detonations, explosions, and supersonic combustion;
- The generation, storage, and utilisation of hydrogen;
- Engines and gas turbines;
- The modelling of combustion processes, including kinetics and industrial applications;
- Other concepts, including assisted combustion (plasmas, electric, and magnetic fields), catalysis, and fuel synthesis;
- The use of by-products of combustion processes;
- The thermal valorisation of solid fuels;
- Zero-emission combustion technologies;
- Industry perspectives on combustion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mączka, T.; Pawlak-Kruczek, H.; Niedzwiecki, L.; Ziaja, E.; Chorążyczewski, A. Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MWel Power Unit. Energies 2020, 13, 5056. [Google Scholar] [CrossRef]
- Tzelepi, V.; Zeneli, M.; Kourkoumpas, D.S.; Karampinis, E.; Gypakis, A.; Nikolopoulos, N.; Grammelis, P. Biomass availability in europe as an alternative fuel for full conversion of lignite power plants: A critical review. Energies 2020, 13, 3390. [Google Scholar] [CrossRef]
- Suardi, A.; Latterini, F.; Alfano, V.; Palmieri, N.; Bergonzoli, S.; Karampinis, E.; Kougioumtzis, M.A.; Grammelis, P.; Pari, L. Machine performance and HOG fuel quality evaluation in olive tree pruning harvesting conducted using a towed shredder on flat and hilly fields. Energies 2020, 13, 1713. [Google Scholar] [CrossRef] [Green Version]
- Fuller, A.; Maier, J.; Karampinis, E.; Kalivodova, J.; Grammelis, P.; Kakaras, E.; Scheffknecht, G. Fly ash formation and characteristics from (co-)Combustion of an herbaceous biomass and a Greek lignite (Low-Rank Coal) in a pulverized fuel pilot-scale test facility. Energies 2018, 11, 1581. [Google Scholar] [CrossRef] [Green Version]
- Seruga, P.; Krzywonos, M.; Seruga, A.; Niedźwiecki, Ł.; Pawlak-Kruczek, H.; Urbanowska, A. Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock. Energies 2020, 13, 3768. [Google Scholar] [CrossRef]
- Luo, H.; Niedzwiecki, L.; Arora, A.; Mościcki, K.; Pawlak-Kruczek, H.; Krochmalny, K.; Baranowski, M.; Tiwari, M.; Sharma, A.; Sharma, T.; et al. Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier. Energies 2020, 13, 3018. [Google Scholar] [CrossRef]
- Sieradzka, M.; Gao, N.; Quan, C.; Mlonka-Mędrala, A.; Magdziarz, A. Biomass thermochemical conversion via pyrolysis with integrated CO2 capture. Energies 2020, 13, 1050. [Google Scholar] [CrossRef] [Green Version]
- Ziółkowski, P.; Madejski, P.; Amiri, M.; Kuś, T.; Stasiak, K.; Subramanian, N.; Pawlak-Kruczek, H.; Badur, J.; Niedźwiecki, Ł.; Mikielewicz, D. Thermodynamic Analysis of Negative CO2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software. Energies 2021, 14, 6304. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedzwiecki, L.; Lech, M.; Wnukowski, M.; Arora, A.; Tkaczuk-Serafin, M.; Baranowski, M.; Krochmalny, K.; Veetil, V.K.; Seruga, P.; et al. HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues. Energies 2020, 13, 2058. [Google Scholar] [CrossRef] [Green Version]
- Ryšavý, J.; Horák, J.; Kremer, J.; Hopan, F.; Kuboňová, L.; Krpec, K.; Kubesa, P.; Molchanov, O. Condensation of water vapour in the flue gas path. J. Heat. Vent. Sanit. 2020, 29, 193–199. [Google Scholar]
- Urbanowska, A.; Kabsch-Korbutowicz, M.; Wnukowski, M.; Seruga, P.; Baranowski, M.; Pawlak-Kruczek, H.; Serafin-Tkaczuk, M.; Krochmalny, K.; Niedzwiecki, L. Treatment of liquid by-products of hydrothermal carbonization (HTC) of agricultural digestate using membrane separation. Energies 2020, 13, 262. [Google Scholar] [CrossRef] [Green Version]
- Hardy, T.; Kakietek, S.; Halawa, K.; Mościcki, K.; Janda, T. Determination of high temperature corrosion rates of steam boiler evaporators using continuous measurements of flue gas composition and neural networks. Energies 2020, 13, 3134. [Google Scholar] [CrossRef]
- Avagianos, I.; Vounatsos, P.; Papandreou, I.; Maier, J.; Grammelis, P.; Kakaras, E. Nanoparticle Emission and Characterization from Pre-Dried Lignite and Bituminous Coal Co-Combustion. Energies 2020, 13, 2373. [Google Scholar] [CrossRef]
- Hardy, T.; Arora, A.; Pawlak-Kruczek, H.; Rafajłowicz, W.; Wietrzych, J.; Niedźwiecki, Ł.; Vishwajeet; Mościcki, K. Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review. Energies 2021, 14, 7132. [Google Scholar] [CrossRef]
- Tic, W.J.; Guziałowska-Tic, J. The effect of modifiers and method of application on fine-coal combustion. Energies 2019, 12, 4572. [Google Scholar] [CrossRef] [Green Version]
- Pawlak-Kruczek, H.; Czerep, M.; Niedzwiecki, L.; Karampinis, E.; Violidakis, I.; Avagianos, I.; Grammelis, P. Drying of Lignite of Various Origins in a Pilot Scale Toroidal Fluidized Bed Dryer using Low Quality Heat. Energies 2019, 12, 1191. [Google Scholar] [CrossRef] [Green Version]
- Skřínský, J.; Ochodek, T. Explosion characteristics of propanol isomer-air mixtures. Energies 2019, 12, 1574. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Moon, B.; Lee, G.G. Development of experimental apparatus for fire resistance test of rechargeable energy storage system in XEV. Energies 2020, 13, 465. [Google Scholar] [CrossRef] [Green Version]
- Kaczorek-Chrobak, K.; Fangrat, J. Influence of constructional-material parameters on the fire properties of electric cables. Energies 2019, 12, 4569. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochodek, T.; Karampinis, E.; Pozarlik, A. Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems. Energies 2022, 15, 1646. https://doi.org/10.3390/en15051646
Ochodek T, Karampinis E, Pozarlik A. Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems. Energies. 2022; 15(5):1646. https://doi.org/10.3390/en15051646
Chicago/Turabian StyleOchodek, Tadeáš, Emmanouil Karampinis, and Artur Pozarlik. 2022. "Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems" Energies 15, no. 5: 1646. https://doi.org/10.3390/en15051646
APA StyleOchodek, T., Karampinis, E., & Pozarlik, A. (2022). Contemporary Problems in Combustion—Fuels, Their Valorisation, Emissions, Flexibility and Auxiliary Systems. Energies, 15(5), 1646. https://doi.org/10.3390/en15051646